
CHAPTER 3 

Parametric Models 

As an aid to understanding the role of non parametric maximum likelihood, 
this chapter is a review of some of the basic features of the standard para­
metric models used in mixture modeling, together with basic features of maxi­
mum likelihood estimation in these models. We will consider the two different 
schools of modeling. In one, the latent distributions Q are assumed discrete, 
with a fixed number of components m. In the other, the latent distributions is 
assumed to come from some parametric family of continuous distributions. 

3.1. Discrete versus continuous. rrhere are certainly instances in 
which the latent distribution is logically and naturally modeled in either the 
discrete or continuous form due to the nature of the application. For example, 
it might be known that there are a finite and known number m of physical 
components in the population or, alternatively, that there is an inherent 
continuity expected in the latent variate <P, such as when it represents a 
continuous covariate that was not measured. 

More typically, however, we are on uncertain ground in specifying the num­
ber of components in a discrete latent distribution. Alternatively, in the case of 
a continuous variate <P, we have no reason to believe it follows any particular 
parametric form. Although it is standard practice to assume normality for the 
latent variate, there is an element of arbitrariness in choosing the appropriate 
function of the latent variate to be normally distributed. 

Moreover, as we have indicated already, we generally obtain very little 
goodness-of-fit information about the latent distribution from the data, and 
so there is little hope of having a large enough sample to investigate the true 
distributional form. 

My own preference is for the use of discrete distributions in cases of doubt. 
The argument is that it makes maximum likelihood numerically simpler, and 
so is to be preferred if the form of the latent distribution specification makes 
little difference to the desired statistical inference. A number of investigations 
have found that misspecifying the latent distribution has very little effect on 
bias, and minimal effect on standard errors beyond the necessary correction 
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for overdispersion when mixing is present [Butler and Louis (1992); Neuhaus, 
Hauk and Kalbfleisch (1992)]. 

One desirable feature of using a continuous family of latent distributions 
is that it leads to a smooth family of posterior densities q(<{J[x) for empirical 
Bayes inference about the latent variates. However, this comes at the risk of 
allowing the user to imagine there is fairly precise information about the shape 
of the posterior, even though it is not possible to verify this shape empirically 
without gargantuan sample sizes. 

On the behalf of using discrete mixtures, I would further argue that there 
is a much greater degree of flexibility-admittedly at the cost of additional 
parameters-without any real loss in fitting power. Moreover, as we will see, 
it is generally much simpler and more reliable numerically to calculate the 
estimates. In particular, a key limitation of the continuous approach is that, ex­
cept for limited cases, the calculation of the mixture density f f(x; <P) · q( <P) d<P 
will require numerical integration, and unlike the discrete case, one usually 
cannot directly apply the reliable EM algorithm to perform the steps in the 
likelihood maximization. 

3.1.1. Continuous models: The conjugate family. Although there are many 
instances where normality is assumed for the distribution of <1>, there is a 
more sophisticated approach to the construction of the latent distribution that 
exploits certain Bayesian structures, where the latent distribution plays the 
role of prior. 

If a parametric family of prior densities q( <P; a, b) is such that the posterior 
densities q(<{J[x;a,b) are from the same parametric family, then the family is 
said to be conjugate to the sampling density f(x;<P) = f(x[<{J). Such a conju­
gacy relationship holds, for example, iff and q are normal densities, because 
then the posterior densities are also normal. 

Diaconis and Ylvisaker (1979) worked out a number of the properties for 
conjugate families in the case when f is from the exponential family. Suppose 
the density for a single observation is from the one parameter exponential 
family considered in the previous chapter, having density 

f(x;<P) = exp(<{Jx- K(<{J)) 

with respect to some measure dF0 (x). If we obtain a sample X1, ... , Xn, then 
the joint density has the form 

f(x;<P) ""~ exp(<P(nx)- nK(<{J)) 

with respect to the product measure, where x = n-1 :L Xi. 

Suppose that the latent parameter <P has a continuous prior density from 
the two parameter conjugate family of models: 

dQ(<P) = q(<P; p.,, ii) d<P = exp(iip.,<P- iiK(<P) -!{l(p.,, ii)) d<{J. 

LAs an exercise, show that the conjugate family for the binomial distribution is 
the Beta( a, {3) distribution, with suitable selection of parameters.] It follows 
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by examination of the joint density f(x; cp) · q( ¢) that the posterior density 
q(cplx) must be from the same family, with updated parameters 

f.t* = aJ.t + (1- a)x, 

with a:= iij(n + ii), and 

ii* == ii + n. 

[Exercise.] The form of the updating suggests a natural interpretation of the 
parameter ii : it is the prior "sample size". Changing it by one unit has exactly 
the same effect on the posterior as does changing the sample size n by one 
unit. Additionally, the posterior parameter f.t* is very elegantly expressed as a 
weighted mean of the prior parameter f.t and the sample mean :X, with weights 
proportional to the "prior sample size" ii and the sample size n. 

Some useful characterizations of the moments of X can be obtained by 
using integration-by-parts techniques. If h(¢) is a differentiable function and 
q(¢) = q(cp;J.t,ii), then we can easily show 

[h(cp) · q(cp)]' = h'(¢) · q(¢) + h(¢) ·liiJ.t- iiJc'(cp)] · q(cp). 

Suppose that h(cp)q(cp) is zero at the left and right limits of the parameter 
space. Then integration of the last displayed equation gives us 

(3.1) 0 = E[h'( <P)] + ii. E[h( <P). {J.t- K1(<P)}]. 

Replacing h( ¢) in (3.1) with various functions of interest now gives a num­
ber of useful identities regarding the marginal distribution of the observable 
variable X. If we let h(¢) = 1, then it proves that 

f.t = E[ K 1 ( cp)]. ' 

That is, in terms of the prior, or latent, distribution, f.t has a natural interpre­
tation. This can be turned into a property for the mean of X by recalling that 
in a one parameter exponential family, 

K'(cp) = E[X; ¢]. 

Hence in terms of the sampling distribution for X, the parameter f.t equals 
E[ E[Xicl>]] = E[X], the marginal mean of X. 

Applying the integration-by-parts trick to h( ¢) = (J.t-K'( ¢))yields a second 
identity 

E[K"(cf>)] = iiE{J.t- K'(c1>)}2 = ii Var(K'(cf>)). 

Since the left-hand side of the last equation is also nE[Var(XI<P) ], we have 
that 

Var(X) = E[Var(XIcf>)] + Var[E(XIcl>)] = Var(1.'(<t>)). [1 + 1]. 
Thus the sampling variance of the sample mean is an inflated version of the 
variability of the latent mean value parameter. [As an exercise in understand·· 
ing, check that these formulas apply in the beta binomial example.] 
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'l'he simple prior-to-posterior relationship makes the conjugate families very 
attractive in the Bayesian framework. 'l'hey would also seem to have nice 
mathematical structures for mixture model inference. However, there are two 
additional points to consider. One is that the families have been constructed 
purely based on mathematical convenience, not modeling considerations, and 
so might leave the user with a goodness-of-fit problem. One solution to this is 
to enlarge the latent distribution model to allow finite mixtures of conjugate 
distributions, say mixed over the mean parameter JL, with the dispersion pa­
rameter ii fixed. Dalal and Hall (1983) show that this class is extremely rich, 
in that one can approximate arbitrarily closely any prior Q. 

Another point to consider is that the tidy prior-posterior relationship pro­
vides no guarantees that the marginal mixture density has any nice features. 
Typically the resulting marginal distribution for X is no longer in the expo­
nential family and so lacks the nice features thereof, such as reduction to suf­
ficient statistics, guaranteed-to-be-unimodal likelihoods and uniformly most 
powerful test procedures. It is easily checked that the likelihood equations 
have the form 

n- 1 l:E[¢[X =Xi]= E[¢], 

n-1 L E[K(¢)[X =Xi]= E[K(<l>)]. 

Thus in the conjugate family model, [L = x does not seem to be implied by 
the likelihood equations. This occurs in contrast to the finite mixture model, 
where we will show that the likelihood equations imply that the sample mean 
is equated to the theoretical mean. 

3.2. Discrete latent distribution. We now turn to the alternative form 
of parametric modeling, in which one assumes that the latent distribution 
is discrete, with a known number of components m. We will denote a latent 
distribution of this type as Q m. 

3.2.1. Known component distributions. We return to the models of Section 
1.3.1, in which the mixture density can be written as f(x; Qm) = "L fJ(X)7Tj, 
with known component densities fJ, j = 1, ... , m. We now wish to set up the 
likelihood equations for the weight parameters. One obstacle is the need to 
satisfy the constraint L. 7TJ = 1. One solution is to use a Lagrange multiplier 
technique. Another one is to eliminate one of the weights, say by setting 7T m = 
1- 7T 1 - · · ·- 7Tm-·1· If this is done, there are then m- 1 score functions 

(3.2) Sj(-rr) = .~_ln(L(Qm)) = L {j(Xi) ~ fm(xi). 
a1rj {(Xi, Qm) 

Unfortunately, the inequality constraints 7TJ 2: 0 mean that unless the max­
imum likelihood estimator 7T J is in the interior of the parameter space, with 
all 7T J strictly positive, the estimate does not solve the usual likelihood equa­
tions S J ( -rr) = 0. Although we ignore this difficulty in this chapter, it should 
be pointed out that the nonparametric mixture maximum likelihood theorem 
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of Chapter 1 does apply, and so the solution is completely described by the 
gradient inequality. 

However, there are two pieces of good news. First, the log likelihood is 
strictly concave in the parameters 7r. [Exercise: Show that the matrix of second 
derivatives is negative definite.] This means that we have unique solutions for 
the weights, provided that they are identifiable. The second piece of good news 
is that the EM algorithm is easy to construct and implement. 

Here is one derivation of the EM algorithm for this problem. By rearranging 
the likelihood equations Sj(rr) = 0, one obtains the equivalent equations 

(3.3) 

[Exercise.] This is a vector equation of the "fixed point" type, namely, 'IT= F( 'IT), 
and the corresponding fixed point algorithm is simple: Given the current value 
'ITc, the updated value is 'ITu = F( 'IT c). 

We will return to this algorithm later in order to give its missing data 
interpretation and some further background. 

3.2.2. Unknown component parameters. If the m-component densities 
have unknown latent parameters 6, ... , t:m. then we must also maximize the 
likelihood over them. Thus, in addition to the previous score functions for the 
weights, we will need the s scores: 

(3.4) 

We have written the scores in this fashion to emphasize that they are weighted 
sums of the score functions 

from the unicomponent model. 
The full m-component likelihood equations then require solving for the full 

set of scores (3.2) and (3.4) to equal zero. Unfortunately, the likelihood equa­
tions no longer need have unique solutions. Indeed, experience suggests that 
they frequently have multiple solutions. We will discuss this point further 
when discussing the issue of initial values for algorithms. On the other hand, 
despite their apparent complexity, there is the easy-to-program and reliable 
EM algorithm to implement for their solution. 

3.3. Properties of the m-component MLE. We suppose that we have 
an m-component mixture estimator Qm that satisfies the likelihood equations 
satisfied above. There ar~ useful ways to paraphrase these equations that give 
some further insights. The following results are from Lindsay (1981). 
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PROPOSITION 8. For any function g(cf>) and Qm an m-component solution 
determined by setting the 7T scores in (3.2) equal to zero, the following self­
consistency equations hold: 

n -1 L E[g(<I>)IX =-= Xii Qm] = E[g(<l>); Qm]. 

The proof is left as an exercise. The preceding result applies to both the 
known and unknown component cases. The score equations from the unknown 
components can also be given a prior-posterior expression as follows: 

PROPOSITION 9. I:i'or any function h( cf>) and any m-component solution 
found by setting the {;-score functions in (3.4) to zero, we have 

n-1 L E[ h(<l>)v(<I>; xi) IX= Xi; Qm] = 0. 

We may put these two sets of equations together in the case of the expo­
nential family mixture to obtain the following first moment property. 

PROPOSITION 10. If the component density f(x; cf>) is a one parameter ex­
ponential family, and Qm satisfies them-component likelihood equations, then 
E[X; Qm] = x. 

This may be proved by using h ( cf>) :.:::: 1 and g ( cf>) = K 1 ( cf>) in the two preced­
ing propositions. 

3.4. EM algorithm. The next task is to give a derivation of the EM al­
gorithm for the m-component discrete mixture model. 

3.4.1. A description of the EM. The EM algorithm requires a particular 
model structure. Suppose that we have a model with parameters 'YJ in which 
there is both observed data X and missing data J. We need to maximize the 
likelihood of the observed data X, call it Lx(TJ), but the likelihood is difficult 
to maximize. However, we assume that if we knew the unobserved data J, 
then the maximization of the likelihood L(X,J) ( 'YJ) of the pair (X, J) would be 
easy, ideally having explicit solutions. We note that the "missing data" J could 
be completely imaginary; the important thing is that the distribution of the 
variable X that is observed is exactly the same as the marginal distribution 
of X in some hypothetical pair (X, J) which has an "easier" likelihood. 

The E step in the EM algorithm in this situation involves taking a cur­
rent value 'YJc and finding the EM log likelihood lem, which is the conditional 
expectation of the full data log likelihood ln(L(X,J)) given the observed data: 

lcm(TJ;TJc) :=-· E[lnL(x,J)('YJ) I X;TJcJ. 

1'he M step in a cycle is to let the EM solution 'YJc+l be that value of 'YJ, that 
maximizes the EM likelihood lem( YJ; YJJ. Ideally, both steps have explicit solu­
tions. 
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It is a simple exercise in the use of Jensen's inequality to show that such an 
iterative sequence increases the true likelihood L x at each cycle [Dempster, 
Laird and Rubin (1977)]. 

3.4.2. The EM for finite mixtures. We will set these equations up in the 
framework of the discrete component density. The advantage to this approach 
is that we can give a simple interpretation of the action of the algorithm in 
terms of the filling-in-by-expectation of the unobserved cells of a contingency 
table. The formulas are exactly the same in the continuous case, but this 
author finds the contingency table approach more insightful. 

In the multinomial case we can reduce the observed data by sufficiency to 
the counts n(t) =#{Xi = t}. The missing data will be the variables Ji that 
identify the component labels (introduced in Chapter 1, Section 1.1). Thus in a 
discrete setting, we can reduce the complete data by sufficiency to the counts 
nj(t) of the number of times the pair (t, j) appeared in the complete sample. 
The observed data are then the column marginal totals of an unobserved 
table of counts, where the rows correspond to the different components and 
the columns correspond to the possible values of the variable X: see Table 3.1. 
The corresponding table of multinomial cell probabilities is shown in Table 3.2. 

The complete data log likelihood for such a multinomial model is simply 

(3.5) 
~~nj(t)ln[1Tj{(t;gj)] = ~=ln(1Tj)(~nj(t)) 

+I: I>j(t) ln(f(t; gj)). 
j t 

Since the entries nj(t) in the full table are unobserved, to calculate lem we take 
the complete data log likelihood (3.5) and replace the nj(t) with their expecta­
tions, say iij(t), conditioned upon the observed data and the current parameter 
estimates. This is easily done by allocating the total observed counts in a col­
umn n(t) to each row in that column proportionally to its current estimated 
cell probability, so that we have 

- ·(t) = (t). 1Tj{(t;gj) 
nJ n f(t; Qm) · 

Since the parameters 1T and g separate in the complete data likelihood 
(3.5), the EM algorithm updates the current estimates of the weights 1T by 

TABLE 3.1 

t= 0 t= 1 t=T 

J=l n1(0) n1 (1) n1(T) 
J=2 n2(0) n2(l) n2(T) 

J=m nm(O) n.,(l) nm(T) 

Totals n(O) n(l) n(T) 
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TABLE 3.2 

t=O t=l t=T 

J=l 7rt{(O;g!) 7Ttf(1;6) 7rt{(T;6) 
J=2 "TT2((0;gz) 71"2{(1; gz) "TTz((T; gz) 

J=m 7Tn.f(O; Sm) 7r.,f(l; g,.) 7Tmf(T;gm) 

Totals f(O; Q) f(l; Q) f(T; Q) 

maximizing the first summand of the likelihood above, yielding 

7Tj,em = 7Tjn-1 I: :n1(t), 
t 

the same formula derived earlier as a fixed point algorithm. 

63 

Notice also the algorithm has a natural interpretation in terms of the pos­
terior probabilities. The term 

7Tjli := Pr(Ji = iiX =Xi; Qm) 

represents the posterior probability that the ith observation was from compo­
nent j. The updated estimate of the weight parameter equals the average of 
the current estimated posterior probabilities: 

. ~ -1" 7Tj,em = Pr(J = ;; Qem) = n L 7TJii· 
i 

If the component parameters g1 are unknown, then we must add to the 
previous equations a set of equations for them. In this case, we must solve 
Lt iiJ(t)v(gJ,em; t) = 0. This equation is related to the second proposition of 
the preceding section in that it specifies 

L 'ITJiiv(gj,em; xi)= 0, 
i 

a weighted set of score equations. If the components have an exponential 
family density, then these equations specify that the EM iterations in the 
mean value parameters 0(0 are 

L:i 7T Jli . Xi 
/Lj, em ::c·: - \:~ --; 

L.i 7T Jli 

that is, they are simply reweighted means, where the weights are proportional 
to the posterior probability of having come from group j. 

3.4.3. Algorithmic theory. A basic overview and some algorithmic theory 
for the EM algorithm in the mixture model can be found in Redner and Walker 
(1984). In addition to the simplicity of construction in the mixture model, 
which is very easy to program, it must be stated that it increases the likelihood 
at every step and so is quite reliable at finding local maxima of the likelihood. 

However, one key feature of the algorithm is that it commonly displays a 
very slow linear rate of convergence, where the rate constant is related to the 
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amount of information in the missing portion of the data. If the components 
are similar in their densities, then the convergence is extremely slow. 'rhe 
convergence will also be slow when the maximum likelihood solution requires 
some of the weight parameters to be zero, because the algorithm can never 
reach such a boundary point. Although this is not so severe a problem for 
computing point estimates with modern computers, it can make simulation 
studies quite tedious. 

An additional and related problem is that of deciding when to stop the 
algorithm. One risk to the naive user is the natural tendency to use a stopping 
rule for the algorithm based on the changes in the parameters or the likelihood 
being sufficiently small. Unfortunately, taking small steps does not mean we 
are close to the solution. If we were to continue, we might end up taking many 
more steps of nearly the same size and arriving at the solution a long distance 
away. 

To combat this problem, Bohning, Dietz, Schaub, Schlattman, and Lindsay 
(1994) exploit the regularity of the EM algorithmic process to predict, via the 
device known as Aitken acceleration, the value of the log likelihood at the 
maximum likelihood solution. This method is suitable whenever one is using 
a linearly convergent algorithm with a slow rate of convergence. If li--2, li .. 1 

and li are the log likelihood values for three consecutive steps of the algorithm, 
then the predicted final value is 

l'(' = li-2 + -1 
1 Ui-1 --li. 2) 
-Ci 

li -- li-1 
where ci == -------. 

li-1 ·- li-·2 

If the algorithm is moving slowly, then ci, an estimate of the rate, will be close 
to 1, and l'(' will be substantially larger than li. 

Bohning, Dietz, Schaub, Schlattman and Lindsay (1994) used this device 
to carry out a simulation study of the likelihood ratio test for one component 
versus two components. It enabled them to predict the final maximized like­
lihood with many fewer iterations. The Aitken accelerated value can also be 
used to construct a stopping rule that more adequately captures the desired 
numerical accuracy than the usual "lack-of-progress" stopping rule criterion 

stop if li ··- li. 1 < tol, 

where tol is a prespecified tolerance level. Provided that l'(' is a good estimator 
of the final likelihood, the rule 

stop if l'(' ·- li < tol 

will cause the algorithm to stop only when the solution is near, and tol will 
more meaningfully represent the actual accuracy attained. 

The idea of Aitken acceleration can be applied to the entire vector of param­
eters to speed up the algorithm itself [Louis (1982)]. However, as the number 
of parameters grows, this becomes more difficult to implement and less reli­
able. Other devices for speeding up the algorithm can be found in a variety of 
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papers in the literature, proving that this is considered a serious problem and 
that no solution yet is completely satisfactory. Another point regarding the 
EM algorithm for mixtures is that, in fact, there are sometimes other ways 
to specify the "missing data," so there is not a unique EM algorithm. There 
are situations, such as the known component model, where there exist EM 
algorithms that are strictly superior to the one presented here, although the 
one here is the simplest. 

As a final point, we relate the EM algorithm to the properties of the gradient 
function. First, we can express the EM steps for the weights as a form of 
gradient projection: 

'lfJ,em = 'lfj[1 + n-1DQm(gj)]. 

The likelihood equations for the support point gJ can be written as 

D'Q (gJ·) = 0. 
m 

The EM algorithm leaves the support point fixed if this equation is satisfied 
and will move it in the direction of increasing gradient value when it is vio­
lated. [Exercise.] 

3.5. Multimodality and starting values. The presence of significant 
multimodality in the finite component likelihood has a number of important 
consequences. 

For one thing, the solution of the likelihood equations can depend greatly 
on the initial values for the algorithmic method chosen. In an example given 
in Bohning, Schlattman and Lindsay (1992), it was found that in a particu­
lar problem in which the global maximum likelihood estimator for the two­
component model had support points -1.6 and -6, starting the iterations of 
the EM algorithm with mass 0.5 at the points 0 and one of -1, -2, -3,-4 or 
-·5 led to a second local maximum that had support points 0 and -1.8. 

A second consequence of multimodality is that Newtonian-type algorithmic 
methods for obtaining solutions can be very unstable [Finch, Mendell and 
Thode (1989)]. 

Yet another important implication, one that will arise later in the considera­
tion of the likelihood ratio test, is that the results obtained from a simulation 
study can be highly dependent on the stopping rules and search strategies 
employed. Indeed, this can make it quite difficult to compare the results of 
simulation studies or assess their reliability. 

It is widely considered desirable to find the global maximum to the like­
lihood. If this is the goal, then one can adopt a number of strategies. One 
approach, suggested in Bohning, Sehlattman and Lindsay (1992), is to cal­
culate the nonparametric maximum likelihood estimator of Q, which can be 
done unambiguously. If it has more components than desired, one can often 
reasonably choose a way to consolidate nearby support points in a way that 
the likelihood stays near its maximum value. The use of this method was 
illustrated in the aforementioned example, and it was found that the four 
point NPMLE gave a good prediction of the best two-component MLE. 
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On the other hand, if the NPMLE has fewer components than desired, 
then this indicates that it will be impossible to find a maximum likelihood 
estimator with the desired number of components. (In such a situation, the 
EM algorithm iterations will either slowly merge the support points {; together 
or force some values of 7T toward zero, because estimators with fewer support 
points have higher likelihoods than those with more.) 

We should also note that this strategy for constructing initial values is not 
possible in some mixture models, such as the normal with unknown variance, 
in which a NPMLE does not exist. 

Finch, Mendell and Thode (1989) suggest a strategy of multiple random 
starts that enables one to make a probabilistic estimate of the number of 
unseen modes to the likelihood. Another strategy that is possible in the two­
component univariate normal is to use a normal probability plot to estimate 
the means and variance (or variances) from the slope and intercepts in the two 
tails. [See, e.g., Titterington, Smith and Makov (1985), pages 58-60.] This last 
approach would not be effective in a simulation study, nor would the NPMLE 
approach, unless they were made more systematic. 

A point that is seldom raised is that it is not clear that one should insist on 
finding the global maximum to the likelihood. For example, if one is estimating 
the parameters in the normal mixture 

then the global maximum to the likelihood is oo. This can be established by 
letting f.L2 = X1, or any other observation, and letting u~ go to zero. Then the 
term in the likelihood corresponding to x1 becomes infinite while the other 
terms stay bounded below [Kiefer and Wolfowitz (1956)]. However, it is known 
that there is a consistent sequence of roots to the likelihood equation [Kiefer 
(1978)]. 

For these reasons, this author has been interested in constructing reliable 
and consistent estimators of the mixture parameters by moment methods and 
using these as initial values in likelihood algorithms. It is quite clear that 
if there is a consistent sequence of roots to the likelihood equations and we 
start our algorithm at the moment estimators, which will be .fii consistent, 
then, at least asymptotically, we should be finding a root close to the true 
values of the parameters. Lindsay (1989a) has an extensive development of the 
moment estimators, showing how they can be constructed in many important 
exponential family models. Among their important features is that they are 
unique, so that one need not hunt for the best solution, and that they are 
often numerically simple to compute compared to the maximum likelihood 
estimators. 

The use of moment estimators was investigated extensively by simulation 
in the normal mixture model by Furman and Lindsay (1994a, b). They found 
that the moment estimators had high initial likelihoods, generally higher than 
using the true parameter values of the simulation, and that the EM iterations 
that were started at the true values, thereby leading to the solution of the like-
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lihood equations closest to the truth, almost always picked the same solution 
as the EM iterations started at the moment estimators. 

Following this successful experiment, Lindsay and Basak (1993) developed 
moment methods for the multivariate normal problem, which was considerably 
more challenging, but still resulted in a successful and numerically fast way 
to construct initial values. 
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