
Chapter 6

Dependent Tailfree Process and

Dependent Multivariate PT

6.1. Linear Dependent Tailfree Process (LDTP)

The popular DDP models for families of random probability measures G = {Gx, x ∈
X} inherits a limitation from the underlying DP prior. The probability measures
Gx are a.s. discrete. We earlier discussed a simple fix by convolution with continu-
ous kernels. Alternatively, Jara and Hanson (2011) define a nonparametric Bayesian
prior model p(G) that builds on the PT construction and allows to generate ab-
solutely continuous distributions Gx. Recall the construction of the PT prior by
defining

(6.1) G(Bε0 | Bε) ≡ Yε0 ∼ Be(aε0, aε1)

for Bε and Bε0 in two adjacent levels of the nested partition. By definition of the
PT prior, Yε0 are independent across ε. Jara and Hanson (2011) build on (6.1) to
define a prior for G. Similar to (6.1) they define

Yx,ε0 = Gx(Bε0 | Bε),

and introduce dependence across x by a simple logistic regression

(6.2) Yxε0 =
exp(x′βε0)

1 + exp(x′βε0)
,

leaving independence across ε intact. They recommend a g-prior βε0∼N[0, g(X ′X)−1],
with g = 2n/c.

Figure 6.1 shows inference in an example. Model (6.2) is a natural equivalent of
the PT model for G ∼ PT to families of random probability measures {Gx, x ∈ X}.
However, we should note that, because the logistic model (6.2) for a fixed x does not
reduce a beta prior, the implied marginal for Gx is not a PT prior and the model
is not, strictly speaking, an extension of the PT model discussed in Chapter 4.

6.2. Dependent PTs

Trippa et al. (2011) develop a generalization of the PT prior to a model for related
RPMs G = {Gx, x ∈ X} for applications similar to the DDP model. Trippa et al.
(2011) define a dependent multivariate PT prior (MPT) for G. The advantage of
the MPT is the possibility to restrict the model to continuous random distributions
and an elegant construction to introduce the dependence. In contrast to the DDP
there is no need to track point masses across covariates, and covariates can be of
any data format, continuous, categorical or count variables. To avoid confusion we
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78 Dependent Tailfree Process and Dependent Multivariate PT

Fig 6.1. Posterior estimates Gx = E(Gx | data). The figure plots Gx(t) against x ∈ (−1, 1) and
−2.5 ≤ t ≤ 2.5.

note that this construction is different from the multivariate PT of §4.5. The latter
defines a single random probability measure G on a multivariate sample space, while
the former constructs a BNP prior for a family G of random probability measures
indexed by x.

Recall the independent random splitting probabilities for a PT random measure
G ∼ PT,

Yε = G(Bε0 | Bε) ∼ Be(aε0, aε1).

Note that in anticipation of the upcoming construction we index the random split-
ting probabilities by ε, rather than (ε, 0), as before. By definition of the PT, Yε are
independent across ε. The construction of the MPT is conceptually very straight-
forward. We simply replace the independent beta random variables by random pro-
cesses Yx,ε with unchanged marginal beta prior, but now with dependence across x.

6.2.1. Multivariate Beta Process

We refer to the desired process Yx,ε as a multivariate beta process (MPT). For clari-
fication we note that the MPT is unrelated to the beta process of Hjort (1990). The
MPT uses one realization of the MBP for each ε. In the upcoming brief definition
of the MBP we simplify notation by dropping the ε index in Yx,ε.

The construction starts with the representation of a beta random variable Yx

as a ratio of gamma random variables. Let Go
x, G

1
x denote two independent gamma

random variables. Then Yx = Go
x/(G

o
x + G1

x) is a beta random variable. Next we
generate the gamma random variables indirectly as illustrated in Figure 6.2 as the
random measures Γ(So

x) and Γ(S1
x) assigned by a gamma process Γ(·) to the area

circumscribed by kernels centered at x under a gamma process Γ(·).
Let X denote the covariate space. The gamma process is defined on X × �; if

X = �k, then the gamma process is indexed by (k + 1) dimensional Borel sets.
The trick is that the same construction works just as well to define Yx1

and Yx2
for

two covariate values x1, x2. The magic is that the overlap of the kernels centered at
x1 and x2 induces exactly the kind of desired dependence between Yx1

and Yx2
. If

the kernels are N(x, σ) Gaussian kernels, then the choice of the scale σ determines
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Fig 6.2. Generating the beta r.v. Yx as ratio of gamma random measures. The gamma random
variables are created as random measures G0

x = Γ(S0
x) and G1

x = Γ(S1
x) of two the sets S0

x and
S1
x under a gamma process Γ(·).
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Fig 6.3. Ratios of gamma random variables define two dependent beta random variables, Yx1 =
Go

x1
/(Go

x1
+ G1

x2
) and Yx2 = Go

x2
/(Go

x2
+ G1

x2
). The overlap of the kernels determines the

correlation. The construction generalizes to families {Yx; x ∈ X}.

the level of dependence. Finally, the construction generalizes to {Yx; x ∈ X}, as
desired.

In summary, we define the MBP as follows. Let Q = {qx(·)} denote a family
of kernels indexed by x ∈ X. For continuous covariates the kernels could be, for
example, Gaussian kernels centered at x. Let S0

x = {(ξ, ζ), ζ ∈ X, 0 < ζ < α0qx(ξ)}
denote the area circumscribed by α0qx(·), and similarly for S1

x for −α1qx(·). De-

fine Yx =
G(S0

x)
G(S0

x)+G(S1
x)

for x ∈ X. In this case we say that {Yx; x ∈ X} ∼
MBP(α0, α1, Q).

For use in posterior simulation we note an alternative equivalent construction.
For a detailed description of posterior inference see Trippa et al. (2011). Here we
only introduce the main trick of constructing posterior simulation for the MBP
(and thus in the MPT) as standard posterior simulation in DP models. Assume
(Yx1 , . . . , Yxm) ∼ MBP(α0, α1, Q) indexed by xi, i = 1, . . . ,m. In words, we will
construct (Yx1 , . . . , Yxm) as ratios of random measures generated under a DP prior.
The construction hinges on the fact that a DP random measure can be written as
a normalized gamma process. Thus the ratio of random measures under a DP prior
takes the form of a ratio of gamma distributed random variables.

Let S ≡ ⋃m
i=1(S

0
xi

∪ S1
xi
) denote the region bounded by the 2 · m kernels and

let νx1···xm
≡ denote Lebesgue measure on S. The region S is shown in Figure 6.4.
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Fig 6.4. Region S cicumscribed by the union of the 2 m kernels.

Consider a DP random measure

Dx1···xm
∼ DP(νx1···xm

).

The representation of the DP as a normalized gamma process implies

Yxi =
G(S0

x)

G(S0
x) +G(S1

x)

d
=

Dx1···xm
(S0

xi
)

Dx1···xm
(S0

xi
∪ S1

xi
)
.

This representation can be used to construct a Pólya urn scheme to simulate draws
from the MBP. Assume that Zi | Yxi

∼ Ber(Yxi
) and {Yxi

} ∼ MBP. Then Z =
(Z1, . . . , Zm) can be generated as follows. First generate a sequence (ξh, ζh) ∼
Dx1···xm . These are points in S (area between the kernels). Find the first pair
(ξh, ζh) ∈ S0

xi
∪ S1

xi
and record Zi = I(ζ > 0) for that pair. Then we repeat the

same for Z2, etc. The key feature is that the (ξ, ζ) sequence can be generated by the
Pólya urn scheme for a marginal sample from a DP random measure, marginalizing
with respect to Dx1···xm

.
Later, when we use the MBP to define a prior for the random splitting prob-

abilities Yxi,ε in the MPT, then the Zi will be the binary digits of observations
yi ∼ Gxi

, with p(Gx) defined by the binary splitting probabilities Yx,ε. Details of
this construction are described next.

6.2.2. Dependent Multivariate Pólya Tree

The MBP can be used to generate the beta random variables Yx,ε for a PT prior
Gx ∼ PT for x ∈ X, with the dependence across x induced by the dependence of
the MBP. We first discuss the construction for a uniform centering distribution,
i.e., E(Gx) = Uni[0, 1] for all x. We use the dyadic quantiles of the uniform on [0, 1]
to define the nested partition sequence, i.e., Bε are the sets [0, 1

2 ), [
1
2 , 1], [0,

1
4 ), etc.

Then, we use the MBP to define the random splitting probabilities. For each ε
define {Yε,x} ∼ MBP(αε, αε, Q), using one MBP for each ε. We define a family of
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Fig 6.5. Lung cancer trial. Panel (a) shows the data as Kaplan–Meier curves for treatment (solid
line) and control (dashed line). Panels (b) and (c) show the model-based estimates of survival
curves arranged by cancer histology, together with the corresponding KM curves.

RPMs by

Px(Bε1···εm) =

m∏

j=1;εj=0

Yε1···εj−10,x

m∏

j=1;εj=1

(1− Yε1···εj−10,x).

We write {Px; x ∈ X} ∼ MPT(A, Q,Uni[0, 1]). The third argument, marks the
centering E(Px) = Uni[0, 1] at the uniform distribution.

Arbitrary centering distributions Fx are easily achieved by modifying the defini-
tion to

Px(F
−1
x (Bε1···εm) =

m∏

j=1;εj=0

Yε1···εj−10,x

m∏

j=1;εj=1

(1− Yε1···εj−11,x).

We write {Gx; x ∈ X} ∼ MPT(A, Q, Fx).

Example 23 Lung Cancer Trial. Lad et al. (1988) report a clinical trial for lung
cancer patients. The trial compared radiotherapy versus radiotherapy plus adjuvant
chemotherapy. The overall survival data for this study are published in Piantadosi
(1997) and is shown in Figure 6.2a. Notice the crossing survival functions The trial
enrolled n = 164 patients, of whom 28 were alive at the end of the followup period.
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The two most important baseline covariates were indicators for squamous versus
non-squamous (xi1) histology and performance status at enrollment (xi2). The latter
is dichotomized Karnofsky score, with x2i = 1 for Karnofsky score ≥ 7. We define
a third covariate x0i for treatment assignment with x0i = 1 for radiotherapy plus
chemotherapy. Trippa et al. (2011) use the MPT to analyze the data. The MPT
model with covariates xi = (xi0, xi1, xi2) and overall survival times yi as outcomes
implements a fully nonparametric regression for these survival data. Figure 6.2
shows the data and the estimated survival curves.
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