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Extremes of two-step regression quantiles∗
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Technical University of Liberec and Charles University in Prague

Abstract:
The article deals with estimators of extreme value index based on two-

step regression quantiles in the linear regression model. Two-step regression
quantiles can be seen as a possible generalization of the quantile idea and
as an alternative to regression quantiles. We derive the approximation of the
tail quantile function of errors. Following Drees (1998) we consider a class of
smooth functionals of the tail quantile function as a tool for the construction of
estimators in the linear regression context. Pickands, maximum likelihood and
probability weighted moments estimators are illustrated on simulated data.

1. Introduction

Let E1, . . . , En, n ∈ N be independent and identically distributed random variables
with a common distribution function function F belonging to some max-domain of
attraction of an extreme-value distribution Gγ for some parameter γ ∈ R, i.e there
exists a function a(t) with a constant sign such that for any x > 0 and some γ ∈ R

(1.1) lim
t→0

F−1(1− tx)− F−1(1− t)

a(t)
=

x−γ − 1

γ
.

The relation (1.1) is equivalent to the Fisher–Tippet result: If for some distribu-
tion function Gγ(x) and sequences of real numbers a(n) > 0 and b(n), n ∈ N,
limn→∞ Fn(a(n)x + b(n)) = Gγ(x) for every continuity point x of G, then Gγ is
the extreme value distribution, i. e. Gγ(x) = exp(−(1 + γx)−1/γ), γ �= 0, and the
case γ = 0 is interpreted as the limit γ → 0.

The problem of estimating the so-called extreme value index γ, which determines
the behavior of the distribution function F in its upper tail, has received much
attention in the literature, see e. g. [3] and references cited there. More attention
has been paid to estimators that are based on a certain number of upper order
statistics. They are usually scale invariant but not invariant under a shift of the
data, see [1] for some examples.

However, one of the challenging ideas of the recent advances in the field of sta-
tistical modeling of extreme events has been the development of models with time-
dependent parameters or more generally models incorporating covariates.
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Therefore, in the present paper we aim at extending the general result given in
Drees (1998) to linear regression. Consider the following linear model

(1.2) Y = β01n +Xβ +E,

where Y = (Y1, . . . , Yn)
� is a vector of observations, X is an (n× p) known design

matrix with rows xi = (xi1, . . . , xip)
′, i = 1, . . . n, 1n = (1, . . . , 1)� ∈ R

n, E =
(E1, . . . , En)

� is a vector of i. i. d. errors with an unknown distribution function F ,
β0 and β = (β1, . . . , βp)

� are the unknown parameters.
The outline of this paper is as follows. Section 2 describes the construction of the

two-step regression quantiles. In Section 3 the estimation of the extremes of the two-
step extreme regression quantiles is given. Following Drees (1998) we establish the
approximation for the tail quantile function of residual and we show the consistency
and the asymptotic distribution of functionals of the tail quantile function in Section
4. The simulation study is contained in Section 5.

2. Two-step regression quantiles

Jurečková and Picek [9] proposed an alternative of the α-regression quantiles sug-

gested by Koenker and Basset [12] in the model (1.2) as follows: Let β̂nR(α) be
an appropriate R-estimate of the slope parameter β and let β̃n0 denote [nα]-order

statistic of the residuals Yi−x�
i β̂nR(α), then the vector β̃n(α) :=

(
β̃n0, β̂nR(α)

)�

is called the two-step α-regression quantile.
The initial R-estimator of the slope parameters is constructed as an inverse of
the rank test statistic calculated in the Hodges-Lehmann manner, see [11]: Denote
Rni(Y −Xb) the rank of Yi − x�

i b among (Y1 − x�
1 b, . . . , Yn − x�

nb),b ∈ R
p, i =

1, . . . , n. Note that Rni(Y−Xb) is also the rank of Yi−b0−x�
i b among (Y1−b0(α)−

x�
1 b, . . . , Yn − b0(α) − x�

nb) for any α ∈ (0, 1) because the ranks are translation

invariant. Consider the vector Sn(b) = (Sn1(b), . . . , Snp(b))
�

of the linear rank
statistics, where

(2.1) Snj(b) =

n∑
i=1

xijϕα

(
Rni(Y −Xb)

n+ 1

)
, b ∈ R

p, j = 1, . . . , p.

and ϕα = α− I[x < 0], x ∈ R. Then the estimator β̂nR is defined as

(2.2) β̂nR = argminb∈Rp‖Sn(b)‖1,
where ‖S‖1 =

∑p
j=1 |Sj | is the L1 norm of S, see [6]; or

(2.3) β̂nR = argminb∈RpDn(b),

where

(2.4) Dn(b) =

n∑
i=1

(Yi − x′
ib)ϕα

(
Rni(Y −Xb)

n+ 1

)
is the Jaeckel’s measure of rank dispersion, see [5].

β̂nR estimates only the slope parameters and the computation is invariant of the
size of the intercept.
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Assume the following conditions on distribution function F of errors and on X
in model (1.2):

(A1) F has a continuous density f that is positive on the support of F and has

finite Fisher’s information, i. e. 0 <
∫ (

f ′(x)
f(x)

)2

dF (x) < ∞.

(A2) limn→∞ max1≤i≤n x
�
i

(∑n
k=1 xkx

�
k

)−1
xi = 0.

(A3) limn→∞ n−1
∑n

i=1 x
∗
ix

∗�
i = D∗, where x∗

i = (1, xi1, . . . ,xip)
�, i = 1, . . . , n,

and D∗ is a positively definite (p+ 1)× (p+ 1) matrix.

Under conditions (A1) – (A3), the R-estimator (2.2) and (2.3) admits the following
asymptotic representation,

n
1
2 (β̂nR − β)

= n− 1
2 (f(F−1(α))−1D−1

n∑
i=1

xi

(
α− I[Ei < F−1(α)]

)
+ op(n

−1/4),(2.5)

where D = limn→∞ Dn, Dn = 1
n

∑n
i=1 xix

�
i , for details see [10].

The solutions of (2.2) and (2.3) are generally not unique, nevertheless the asymp-
totic representation (2.5) applies to any of such solution; e. g. we can take the center
of gravity of the set of all solutions.

Jurečková and Picek showed in [9] that the two-step regression quantiles are
asymptotically equivalent to the regression quantiles suggested by Koenker and
Basset in [12]. The α-regression quantile is obtained as a solution of the minimiza-
tion

(2.6) β̂n(α) := argmin(b0,b)

{
n∑

i=1

ρα(Yi − b0 − x�
i b), b0(α) ∈ R,b ∈ R

p

}
with the loss function given by ρα(x) = |x|(αI[x > 0] + (1 − α)I[x < 0]), x ∈
R. The population counterpart of the vector β̂n(α) is the vector β(α) = (β0 +
F−1(α), β1, . . . , βp)

�. The difference between empirical regression quantile and its
theoretical population counterpart is OP (n

−3/4) under general conditions on X and
F , see e. g. Theorem 7.4.1. in [10].

3. Extremes of two-step quantiles

The authors of [9] also considered the extreme two-step quantile Ên:n, which they
define as the maximum of the residuals

(3.1) Ên:n = max{Y1 − x�
1 β̂nR, . . . , Yn − x�

n β̂nR}
calculated with respect to an appropriate R-estimate β̂nR of β. Under suitable
conditions (see [9]) Ên:n is a consistent estimate of En:n + β0 and

(3.2) |Ên:n − En:n − β0| = Op(n
−δ) as n → ∞, 0 < δ < 1

2

Let β̂
+

nR be the initial R-estimate generated by the score function ϕ1− 1
n
(u) = I[u ≥

1− 1
n ]− 1

n , 0 < u < 1. In this case the Jaeckel measure of the rank dispersion (2.4)
takes the form

(3.3) max
1≤i≤n

{Yi − x�
i b} − Ȳn,
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where Ȳn = 1
n

∑n
i=1 Yi. Hence,

(3.4) β̂
+

nR = argminb∈Rp

n∑
i=1

(
Yi − x�

i b
)+

.

Then we can define the maximal two-step regression quantile as
(
Ên:n, β̂

+

nR

)
. For

this estimate it holds that Ên:n + x�
i β̂

+

nR ≥ Yi, i = 1, . . . , n, while for some i0 the
inequality reduces to equality.

Jurečková [8] showed in the case α → 0 or α → 1 that the two-step regres-
sion quantile coincides exactly with the extreme regression quantile considered by
Jurečková and Portnoy in [15]. Jurečková and Portnoy also derived some properties
of the extreme regression quantiles. The extremes of regression quantiles have been
further studied by Chernozhukov in [2]. He established the consistency of intermedi-
ate regression quantiles and simple estimators such as Pickands. Since the two-step
α regression quantiles β̃n(α) are close to α-regression quantiles β̂(α) it should be
interesting to examine the properties of β̃n(α) in the extreme context. This prob-
lem is closely related to the extremal properties the of high-order residuals related
to the initial estimate β̂nR(α).

The methods of extreme value theory are often based not only on the maximum
order statistics but also on the other higher empirical quantiles. In fact, the es-
timates of the extreme value index γ are calculated not only from extreme order
statistics but also from the statistics of intermediate order, k → ∞, k/n → 0 as
n → ∞.

If we consider the regression model (1.2), then the order statistics of errors
are not directly observable but the inference can be based on the estimates of er-
rors. We shall use the residuals of a suitable R-estimate discussed above. Denote{
Ê1, . . . , Ên

}
the set of residuals

{
Y1 − x�

1 (β̂nR − β), . . . , Yn − x�
n (β̂nR − β)

}
.

The following lemma shows that k-th ordered residual Êk:n is an appropriate esti-
mate of Ek:n.

Lemma 3.1. Let β̂nR be an R-estimate of β, generated by a fixed nondecreasing
and integrable score function ϕ : (0, 1) 	→ R, independent of n, as in (2.1) and
(2.2). Assume the conditions (A1) – (A3) and

(3.5) max
1≤i≤n

‖xi‖ = O
(
n

1
2−δ

)
as n → ∞, 0 < δ < 1

2 ,

then

(3.6) sup
1≤k≤n

∣∣∣Êk:n − Ek:n − β0

∣∣∣ = OP (n
−δ), as n → ∞.

Proof. Let D1, . . . , Dn denote the antiranks of E1, . . . , En, i. e. the indices satisfying
Ei:n = EDi

, i = 1, . . . , n. Moreover for an R-estimate β̂nR of the slope β and n ∈ N

un := un(β̂nR) := max
i=1,...,n

|x�
i (β̂nR − β)|.

From the asymptotic representation of β̂nR (2.5) and (3.5) we get un = OP (n
−δ)

as n → ∞.
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Notice that Ê1:n ≤ E1:n+β0+un, because the opposite case Ê1:n > E1:n+β0+un

implies

ÊD1
= E1:n + β0 + xD1

(β − β̂nR) ≤ E1:n + β0 + un < Ê1:n.

Hence, Ê1:n is the smallest observation among
{
Êi, i = 1, . . . , n

}
, therefore it can-

not be greater than ÊD1
.

Similarly, Ê2:n ≤ E2:n + β0 + un because Ê2:n > E2:n + β0 + un leads to

ÊD2
= E2:n + β0 + xD2

(β − β̂nR) ≤ E2:n + β0 + un < Ê2:n

and
ÊD1

= E1:n + β0 + xD1
(β − β̂nR) ≤ E2:n + β0 + un < Ê2:n.

If we proceed analogously, we get

(3.7) Êi,n ≤ Ei,n + β0 + un, i = 1, . . . , n.

On the other hand, it holds for the highest two-step ordered residual Ên:n ≥
En:n + β0 − un, because Ên:n < En:n + β0 − un implies

ÊDn
= En:n + β0 + xDn

(β − β̂nR) ≥ En:n + β0 − un > Ên:n.

We get by the similar arguments as in (3.7)

(3.8) Êi,n ≥ Ei,n + β0 − un, i = 1, . . . , n.

Finally, un = Op(n
−δ) together with (3.8) and (3.7) imply (3.6).

4. Estimators of extreme value index

Suppose for a while we have a simple location model, i. e. β = 0 in (1.2). Many
estimators of γ that are based on upper order statistics considered can be repre-
sented (at least approximately) as a smooth functionals T (Qn) of the empirical tail
quantile function

Qn(t) := F−1
n

(
1− kn

n
t

)
= Xn−[knt]:n, t ∈ [0, 1],

with F−1
n denoting the empirical distribution function and Xi:n the ith order statis-

tic of the i.i.d. sample. Note that Qn depends on the (kn+1) largest order statistics
(1 ≤ kn < n). Drees in [4] studied the asymptotic behaviour of such estimators.

Consider the general regression model (1.2) and the largest order statistics of the
residuals. Let any k ∈ N be such that Êk:n > 0. Then define the tail quantile
function of the residuals as follows

Q̂n,k(t) := Ên−[kt]:n.

Observe that Q̂n,k is the consistent estimate of the empirical tail function of the
errors Qn,k(t) = En−[kt]:n in the sense of Lemma 3.1. We shall provide an approxi-

mation of Q̂n,k for the intermediate sequences of k(n).
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Suppose that the distribution function F in (1.2) satisfies (1.1). To obtain the
approximation of Q̂n,k, however, it is useful to impose stronger condition concerning
the second order approximations of the tails

(4.1) lim
t→0

F−1(1−tx)−F−1(1−t)
a(t) − x−γ−1

γ

A(t)
= K(x),

where a is the function related to (1.1), A(t) is a function of constant sign and K
is some function that is not a multiple of the (x−γ − 1)/γ.
It can be shown that there is some ρ �= 0 such thatK(x) = zγ−ρ = (xρ−γ−1)/(γ−ρ),
which for the cases ρ = 0 and γ = 0 is understood to be equal to the limit of zγ−ρ,
as γ → 0 or ρ → 0, respectively, see [3] for details.

The so-called second-order condition (4.1) naturally arises when discussing the
bias of the estimators of γ, see [3] or [1]. Under second order condition (4.1) one
can establish following uniform approximation of the tail quantile function.

Theorem 4.1. Suppose that the distribution function F of errors in (1.2) satisfies
(4.1) for some γ ∈ R and ρ ≤ 0. Suppose that the assumptions of Lemma 3.1 are
fulfilled. Then we can define a sequence of Wiener processes {Wn(t)}t≥0 such that
for suitable chosen functions A and a and each ε > 0,

sup
t∈(0,1]

tγ+
1
2+ε

∣∣∣∣∣ Q̂n,k(t)− F−1
(
1− k

n

)− β0

a(k/n)
−
(
zγ(t)− k−

1
2 t−(γ+1)Wn(t)

+A

(
k

n

)
K(t)

)∣∣∣∣ = oP

(
k−1/2 + |A(k/n)|

)
,(4.2)

n → ∞, provided k = k(n) → ∞, k/n → 0 and
√
kA(k/n) = O(1)

Proof. Immediately follows from (3.6) and the approximation of the tail quantile
function derived in Theorem 2.1 of [4].

Following [4] we consider the class of smooth statistical functionals of the estimated
empirical tail quantile function T (Q̂n,k) for fixed parameter values γ. We are going
to describe the properties of the functionals on space of functions that are close to
the tail quantile function (or its estimate Q̂n,k). Since F−1(1− t) diverges as t → 0
for γ > 0, we introduce weighted space H of real functions on the interval [0, 1]
which are smooth and similar to the tail quantile function

(4.3) H :=

{
h : [0, 1] → [0,∞]

∣∣∣∣h ∈ C[0, 1], lim
t↓0

(log log(3/t))1/2h(t)

t1/2
, t ∈ [0, 1]

}
.

For each γ ∈ R and h ∈ H we define seminorm on the space of real functions on
the unit interval by ‖z‖γ,h := tγh(t)|z(t)|. In the view of Theorem 4.1

(4.4) Dγ,h :=

{
z : [0, 1] → R

∣∣∣∣limt↓0 tγh(t)z(t) = 0, (tγh(t)z(t))t∈[0,1] ∈ D[0, 1]

}
equipped with the weighted supremum seminorm ‖z‖γ,h is the suitable space in

which weak convergence of Q̂n,k can be established. Furthermore, let Cγ,h :={
z ∈ Dγ,h|z|(0,1] ∈ C(0, 1]

}
be a subset of continuous functions on (0, 1] of Dγ,h.

We shall formulate the key theorem showing the consistence and asymptotical nor-
mality of a broad class of functionals of Q̂n,k.
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Theorem 4.2. Suppose that for γ ∈ R and some h ∈ H the functional T :
span(Dγ,h, 1) → R satisfies

(i) T|Dγ,h
is B(Dγ,h,B(R)-measurable (where B denotes the Borel-σ-field),

(ii) T (az + b) = T (z), for all z ∈ Dγ,h, a > 0, b ∈ R,
(iii) T (zγ) = T (1/γ(x−γ − 1)) = γ
(iv) T|Dγ,h

is Hadamard differentiable tangentially to Cγ,h ⊂ Dγ,h, at zγ with a
derivative T ′

γ , i. e. for some signed measure νT,γ it holds for all 0 < εn → 0
and all yn ∈ Dγ,h such that yn → y ∈ Cγ,h

(4.5) lim
εn→0

T (zγ − εyn)− T (zγ)

εn
= T ′

γ(y) =

∫ 1

0

y dνT,γ .

Then under the assumptions of Theorem 4.1 provided that
√
kA(k/n) → λ

(i) T (Q̂n,k) → γ

(ii) L(k1/2n (T (Q̂n,k)− γ)) → N (μT,γ,ρ, σT,γ), where

μT,γ,ρ :=

∫ 1

0

zγ−ρ dνT,γ

σT,γ := Var

(∫ 1

0

tγ−1W (t) dνT,γ(t)

)
=

∫ 1

0

∫ 1

0

(st)γ−1 min(s, t) dνT,γ(s) dνT,γ(t)

Proof. Follows from Theorem 4.1 similarly as the proof of Theorem 3.2 in [4].

Theorem 4.2 assures that any location and scale invariant estimator of γ is con-
sistent even if it is calculated from estimated residuals instead of the unobservable
errors in (1.2). Moreover, as have been shown in [4] practically all location and
scale invariant estimators of γ belongs to the class satisfying the assumptions of
Theorem 4.2.

Example 4.1. (i) Pickands estimator of γ is generated by the functional

(4.6) TPick(z) =
1

log 2
log

(
z(1/4)− z(1/2)

z(1/2)− z(1)

)
I[(z(1/4)−z(1/2))(z(1/2)−z) > 0].

(ii) Generalized probability weighted moment can be regarded as

(4.7) TPWM(z) =

∫
z dv1∫
z dv2

I

[∫
z dv2 �= 0

]
for suitable finite signed Borel measures vi on [0,1], see [4].

Since the larger observation approximately follow the Generalized Pareto (GP)
distribution, if we apply the maximum likelihood procedure to the observations
exceeding a given high threshold using GP distribution, we obtain an estimator
of extreme value index (i. e. the shape parameter GP distribution). The maximum
likelihood estimator is location and scale invariant, details see [3].

Note that we could also give the similar results of Theorem 4.1 and Lemma 3.1
if we would replace β̂nR by any other suitable estimator of the slope parameter β̂n

fulfilling
β̂n − β = OP (n

−1/2).
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Nevertheless, we focus on β̂nR because it estimates only the slope parameters in
(1.2) and the computation is invariant of the size of the intercept.

But primarily we would like to stress that the nature of the two-step regression
quantiles and their relation to the regression quantiles of Koenker and Basset,
which makes their properties an interesting subject to study. The studied two-step
regression α-quantile is asymptotically equivalent and numerically very close to the
regression α-quantile and the maximal two-step regression quantile coincides with
the maximal regression quantile as it was already mentioned. That is important
if we have proved some results for the two-step regression quantiles only. While
there were described asymptotic properties of the maximal regression quantile, see
[15], [8] and others, only [2] studied the properties of the extreme and intermediate
regression quantiles for different sequences of αn but only in the pointwise sense.
Theorem 4.1 gives immediately the uniform approximation of the tails of the two-
step quantiles, which enables to base the tail modelling fully on the quantile function
of the residuals Q̂n,k(t).

The intrinsic connections between the regression quantiles and the two-step re-
gression are important in the case that the assumptions are violated. There exist
various interesting results showing the stability of regression quantiles even under
dependency and heterogenity of the conditional distribution of the errors, for some
overview see [13]. In this context, the extreme two-step regression quantiles can be
observed as an interesting pattern for working with extreme regression quantiles.

On the other hand, the previously described method are directly applicable for
some real case studies where the independence of the errors is assumed. We can refer
e. g. the Condroz dataset presented in [1] considering calcium level and pH level
of the soil in different regions. We could find other examples e. g. in the climatology,
where the most widely-used method for dealing with the problem of dependency is
declustering. That approach is presented in [14], where authors proposed a method-
ology for estimating high quantiles of distributions of daily temperature, based on
the peaks-over-threshold analysis with a time-dependent threshold expressed in
terms of regression quantiles.

5. Numerical Illustration

In order to check how the estimators of extreme value index perform in the linear
regression model we have conducted a simulation study. We considered the model

Yi = β0 + x�
i β + Ei, i = 1, . . . , n,

where the errors Ei, i = 1, . . . , n, were simulated from the Burr, Generalized Pareto
and Pareto distributions with the following parameter values: sample size n =
400, β0 = 2, β = (β1, β2) = (−1, 2), α = 0.5. Concerning the regression matrix
we generated two columns (x11, . . . , xn1) and (x12, . . . , xn2) as two independent
samples from the uniform distributions R(0, 10) and R(−5, 15), respectively. The

R-estimator β̂R was computed by minimizing Jaeckel’s objective function (2.4).
10 000 replications of the model were simulated for each combination of the pa-

rameters and then the residuals based on the R-estimator β̂R(0.5) were calculated.
For the sake of comparison, the values of Pickands, maximum likelihood, and prob-
ability weighted moments estimator were computed for k - the varying fraction of
ordered residuals.

In Figures 1 – 3 we plotted the median, the 10%-, 25%-, 75%- and 90%- quantiles
of sample of 10 000 estimated values of extreme index by three considered estima-
tors against the intermediate sequences k in the regression model. For the sake of
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comparison, the same procedures were performed on the (normally unobservable)
errors to see how much is lost by estimating the regression coefficients. Notice that
the performance of the estimators practically depends only on the distribution of
errors and not on the structure of regression matrix.
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Fig 1. The median, the 10%-, 25%-, 75%- and 90%- quantiles in the sample of 10 000 estimated
values of extreme index by Pickands (solid), maximum likelihood (dotted) and probability weighted
moments estimators (dashed) for Generalized Pareto distribution of errors with the shape param-
eter γ = 0.5 (denoted by the horizontal line) in the regression model (left) and in the location
model with unobserved errors (right).
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Fig 2. The median, the 10%-, 25%-, 75%- and 90%- quantiles in the sample of 10 000 estimated
values of extreme index by Pickands (solid), maximum likelihood (dotted) and probability weighted
moments estimators (dashed) for Pareto distribution of errors the with shape parameter γ = 1
(denoted by the horizontal line) in the regression model (left) and in the location model with
unobserved errors (right).
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Fig 3. The median, 10%-, 25%-, 75%- and 90%- quantiles in the sample of 10 000 estimated
values of extreme index by Pickands (solid), maximum likelihood (dotted) and probability weighted
moments estimators (dashed) for Burr distribution of errors with the shape parameter γ = 0.2
(denoted by the horizontal line) in the regression model (left) and in the location model with
unobserved errors (right).

The simulation study indicated:

(i) Results are affected by the specification of different values of k but the esti-
mators give quite stable results for a suitable choice of fraction k. We see that
the variance will be smallest for highest values of k.

(ii) The Pickands estimator, compared to the other estimators, shows a much
larger variability. On the other hand, the maximum likelihood estimator is
biased for the Pareto distribution. It is considered on the basis of the theo-
retical result that the threshold excesses have a corresponding approximate
distribution within the Generalized Pareto family (see e. g. [1]). Hence, it
seems that asymptotic result does not work properly in our situation.

(iii) The R-estimator is a solution of the optimization problem (2.2) in such a
way it depends on initial values for the parameters to be optimized over. It
seems from our simulation experiment that the resulting value of minimization
does not depend (or depends very weakly) on the initial points. However, an
unsuitable choice is the time expensive and it may complicate the computation
considerably.

(iv) As we have verified on a considerably larger simulation experiment, the prop-
erties of the two-step regression quantiles are very weakly affected by the
chosen α and by the form of the matrix.
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