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Integral functionals of the density
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University of Delaware and Tbilisi State University

Abstract: We show how a simple argument based on an inequality of McDi-
armid yields strong consistency and central limit results for plug-in estimators
of integral functionals of the density.

1. Introduction

Let X be a random variable with cumulative distribution function F having density
f. Let us consider a general class of integral functionals of the form

(1.1) T (f) =

∫
IR

Φ
(
f (0)(x), f (1)(x), . . . , f (k)(x)

)
dx,

with k ≥ 0, where f (0) = f and f (j) denotes the jth derivative of f , for j = 1, . . . , k,
if k ≥ 1, and Φ is a smooth function defined on IRk+1. Under suitable regular
conditions, which will be specified below, T (f) is finite. Some special cases of (1.1)
are

(1.2) (i)

∫
IR

φ (f(x)) f (x) dx, (ii)

∫
IR

Φ(f(x)) dx and (iii)

∫
IR

(
f (k)(x)

)2
dx.

The estimation of integral functionals of the density and its derivatives has been
studied by a large number statisticians over many decades. Such integral functionals
frequently arise in nonparametric procedures such as bandwidth selection in density
estimation and in location and regression estimation using rank statistics. For good
sources of references to current and past research literature in this area along with
statistical applications consult Nadaraya [9], Levit [7], and Giné and Mason [5].

We shall be studying plug-in estimators of T (f). These estimators are obtained
by replacing f (j), for j = 0, . . . , k, by kernel estimators based on a random sample
of X1, , . . . , Xn, n ≥ 1, i.i.d. X, defined as follows. Let K (·) be a kernel defined on
IR with properties soon to be stated. For h > 0 and each x ∈ IR define the function
on IR

Kh(x− ·) = h−1K ((x− ·) /h) .
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The kernel estimator of f based on X1, , . . . , Xn, n ≥ 1, and a sequence of positive
constants h = hn converging to zero, is

f̂hn
(x) =

1

n

n∑
i=1

Khn
(x−Xi), for x ∈ IR,

and the kernel estimator of f (j), for j = 1, . . . , k, is

f̂
(j)
hn

(x) =
1

n

n∑
i=1

K
(j)
hn

(x−Xi), for x ∈ IR,

where K
(j)
hn

is the jth derivative of Khn
. Note that K

(j)
hn

= h−j−1
n K(j), where K(j) is

the jth derivative of K. We shall often write f̂
(0)
h (x) = f̂h(x) and K

(0)
h (x) = Kh(x).

Also we denote the expectation of these estimators as

(1.3) f
(j)
h (x) = Ef̂

(j)
h (x), for j = 0, . . . , k.

Our plug-in estimator of T (f) is

(1.4) T (f̂h) =

∫
IR

Φ
(
f̂h(x), f̂

(1)
h (x), . . . , f̂

(k)
h (x)

)
dx.

The goal of this paper is to show how a simple argument based on an inequality
of McDiarmid yields a useful representation for T (f̂h). This means that it can be
written as a sum of i.i.d. random variables plus a remainder term that converges
to zero at a good stochastic rate. This will permit us to establish a nice strong
consistency result and central limit theorem for T (f̂h). In the process we shall
generalize and extend the results and methods of Mason [8] to multivariate integral
functionals and estimators of the form (1.1) and (1.4). The [8] paper dealt solely
with the special case in example (i).

In a paper closely related to this one, [5] investigated the Levit [7] estimator of
integral functionals of the density:

(1.5) Θ(F ) =

∫
IR

ϕ(x, F (x), f(x), . . . , f (k)(x)) dF (x) ,

which is formed by replacing in (1.5) the cumulative distribution function F by the
empirical distribution function Fn and the f (j) by modified kernel estimators. They
used very powerful U–statistics inequalities to obtain uniform in bandwidth type
consistency and central limit results for the Levit estimator. These are results that
hold uniformly in an ≤ h ≤ bn, where an and bn are suitable sequences of positive
constants converging to zero.

With a lot more effort, we could derive analog results here for T
(
f̂h

)
using

the methods in [5], as well as the modern empirical process tools developed in
Einmahl and Mason [4] and Dony, Einmahl and Mason [2] in their work on uniform
in bandwidth consistency of kernel type estimators. However, such an endeavour is
well beyond the scope of the present paper. We should point out that one cannot

extend our approach to handle the addition of x, F and Fn into T (f) and T
(
f̂h

)
without imposing moment conditions on F and Φ. The reason is that one has to
integrate with respect to dx instead of dF (x).

Our representation theorem is stated and proved in Section 2. In Section 3 we

use it to derive a strong consistency result and central limit theorem for T
(
f̂h

)
.

We conclude by applying our central limit theorem to the three examples in (1.2).
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2. A representation theorem

Before we state our representation theorem, we shall gather together our basic
assumptions along with some of their implications that will be used throughout
this paper.

Assumptions on the density f .

(F.i) The density function f is continuously differentiable up to order k ≥ 1, if
k ≥ 1.

(F.ii) For some constant M > 0, supx∈IR

∣∣f (j) (x)
∣∣ ≤ M for j = 0, . . . , k.

(F.iii) For each j = 0, . . . , k, f (j) ∈ L1 (IR).

Assumptions on the kernel K.

(K.i)
∫
IR
|K| (x) dx = κ < ∞.

(K.ii)
∫
IR
K(x) dx = 1.

(K.iii) The kernel K is k + 1-times continuously differentiable.

(K.iv) For some D > 0, supx∈IR |K(j)(x)| ≤ D < ∞, j = 0, . . . , k + 1.

(K.v) For each j = 0, . . . , k, lim|x|→∞ K(j) (x) = 0 and K(j) ∈ L1 (IR).

We shall repeatedly use the fact following by integration by parts that under our
assumptions on f and K, that for j = 0, . . . , k,
(2.1)

f
(j)
h (x) = h−j−1

∫
IR

K(j)

(
x− y

h

)
f (y) dy = h−1

∫
IR

K

(
x− y

h

)
f (j) (y) dy.

For j = 0, 1, . . . , k, set

g
(j)
n,h(x) = hj f̂

(j)
h (x) =

1

nh

n∑
i=1

K(j)((x−Xi) /h).

Our assumptions on f and K permit us to apply Theorem 2 of [2] to get for some
h0 > 0, every c > 0 and each j = 0, 1, . . . , k, with probability 1,

(2.2) lim sup
n→∞

sup
c log n

n ≤h≤h0

sup
x∈R

√
nh
∣∣∣g(j)n,h (x)− Eg

(j)
n,h (x)

∣∣∣√| log h| ∨ log log n
=: Gj(c) < ∞.

This implies that as long as hn converges to zero at a rate such that hn ≥ (c log n) /n
for some c > 0, for each j = 0, 1, . . . , k, with probability 1,

(2.3) sup
x∈R

∣∣∣f̂ (j)
hn

(x)− f
(j)
hn

(x)
∣∣∣ = O

(√| log hn| ∨ log log n
√
nh

1/2+j
n

)
.

To see this, notice that

h−jEg
(j)
n,h (x) = f

(j)
h (x) =

∫
IR

h−j−1K (j)

(
x− y

h

)
f(y) dy,
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where f
(j)
h (x) is as in (1.3). Now by applying the formula (2.1) we get

f
(j)
h (x) = h−1

∫
IR

K

(
x− y

h

)
f (j) (y) dy,

which, in turn, by the change of variables v = x−y
h or y = x− hv

(2.4) =

∫
IR

K (v) f (j)(x− hv) dv.

From (2.4) we get via (K.i) and (F.ii) that

(2.5) sup
x∈IR

∣∣∣f (j)
h (x)

∣∣∣ ≤ κM , 0 ≤ j ≤ k.

Therefore as long as

(2.6)
√
| log hn| ∨ log log n/(

√
nh1/2+k

n ) → 0, as n → ∞,

we can infer from (2.3) that with probability 1 for all large enough n

(2.7)
{(

f̂h(x), f̂
(1)
h (x), . . . , f̂

(k)
h (x)

)
: x ∈ IR

}
⊂ C,

where C is any open convex set such that

(2.8) [−κM, κM ]
k+1 ⊂ C.

Assumptions on Φ

(Φ.i) Φ(0, . . . , 0) = 0.

(Φ.ii) The function Φ possesses all derivatives up to second order on an open convex

set C containing [−κM, κM ]
k+1

.

(Φ.iii) The second order derivatives of Φ are uniformly bounded on C by a constant
BΦ > 0.

For j = 0, . . . , k, let

(2.9) Φj (y0, y1, . . . , yk) =
∂Φ(y0, y1, . . . , yk)

∂yj
;

and for 0 ≤ i, j ≤ k set

Φi,j (y0, y1, . . . , yk) =
∂2Φ(y0, y1, . . . , yk)

∂yi∂yj
.

Our assumptions on Φ say that for all 0 ≤ i, j ≤ k,

(2.10) sup {|Φi,j | (y0, y1, . . . , yk) : (y0, y1, . . . , yk) ∈ C} ≤ BΦ.

We shall first verify that T (f), T (fh) and T
(
f̂h

)
are finite.
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Notice that by Taylor’s theorem for each (y0, y1, . . . , yk) ∈ C for some ỹk ∈ C

|Φ| (y0, y1, . . . , yk) =
∣∣∣∣∣∣

k∑
j=0

Φj (0, 0, . . . , 0) yj +
1

2

k∑
i,j=0

∫
IR

Φi,j (ỹk) yiyj

∣∣∣∣∣∣ ,
which for some constant AΦ is

≤ AΦ

⎛⎝ k∑
j=0

|yj |+
k∑

j=0

|yj |2
⎞⎠ .

This implies using (2.10) that for any k+1 bounded measurable functions ϕ0,. . . , ϕk

in L1 (IR) taking values in C,

(2.11)

∫
IR

|Φ| (ϕ0 (x) , ϕ1 (x) , . . . , ϕk (x)) dx < ∞.

From the assumptions on f and K we can easily infer that the functions f (j) and

f
(j)
h , j = 0, . . . , k are bounded and in L1 (IR) . This when combined with (2.5) and
(2.11) implies that both T (f) and T (fhn

) are finite. Similarly, the assumptions on

K imply that each f̂
(j)
h is bounded and in L1 (IR) , which in combination with (2.7)

and (2.11) gives, with probability 1, that the estimator T (f̂hn
) is finite for all n

sufficiently large.

Next we shall represent the difference T (f̂hn
)−T (fhn

) as a sum of i.i.d. random
variables Sn(hn) plus a remainder term Rn. By Taylor’s formula we can write

(2.12) T (f̂hn
)− T (fhn

) = Sn(hn) +Rn,

where for any h > 0, Sn(h) is the sum of i.i.d. random variables

(2.13) Sn(h) =

k∑
j=0

∫
IR

Φj(fh(x), f
(1)
h (x), . . . , f

(k)
h (x))

(
f̂

(j)
h (x)− f

(j)
h (x)

)
dx;

and Rn is the remainder term

(2.14) Rn =
1

2

k∑
i,j=0

∫
IR

Φi,j (ỹk (x))
(
f̂

(i)
hn

(x)− f
(i)
hn

(x)
)(

f̂
(j)
hn

(x)− f
(j)
hn

(x)
)
dx,

with ỹk (x) on the line joining

(fh(x), f
(1)
h (x), . . . , f

(k)
h (x)) and (f̂h(x), f̂

(1)
h (x), . . . , f̂

(k)
h (x)).

Here is our representation theorem. It determines the size of the stochastic remain-
der term Rn in the representation (2.12). Our consistency result and central limit

theorem for T
(
f̂h

)
will follow from it.

Theorem 2.1. Assume the above conditions on the density f , the kernel K and the
function Φ. Then for any positive sequence h = hn ≤ 1 converging to zero at the rate
(2.6) the remainder term in the representation (2.12) satisfies, with probability 1,

(2.15) Rn = O
(
log n/(nh2k+1

n )
)
.

Moreover,

(2.16) Rn = Op

(
1/(nh2k+1

n )
)
.
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Remark 2.2. We call (2.15) a strong representation and (2.16) a weak represen-
tation.

Proof of Theorem 2.1. Applying standard inequalities, we get from (2.10), (2.5)
and (2.7) that for some CΦ > 0, with probability 1 for all large n,

(2.17) |Rn| ≤ CΦ

∫
IR

k∑
j=0

(
f̂

(j)
hn

(x)− f
(j)
hn

(x)
)2

dx.

Let Wk be the Sobolev space of functions g having continuous derivatives of order
up to k ≥ 1, each in L2 (IR) , with the Sobolev norm

‖g‖k =

√√√√ k∑
j=0

∫
IR

|g(j)(x)|2 dx.

The space Wk has the inner product

〈g1, g2〉k =

k∑
j=0

∫
IR

g
(j)
1 (x)g

(j)
2 (x) dx.

Set rn(k) = ‖f̂hn
− fhn

‖2k. We see that with this notation, |Rn| ≤ CΦrn(k). Next
set

Yi = Yi(x) =
1

n
{Khn

(x−Xi)− fhn
(x)} ,

where fhn
(x) = Ef̂hn

(x). Then

n∑
i=1

Yi(x) =
1

n

n∑
i=1

{Khn
(x−Xi)− fhn

(x)} = f̂hn
(x)− fhn

(x).

Therefore

(2.18) rn(k) =

∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
2

k

.

Let us now estimate the ‖ · ‖k norm of the function gi = gi(x) =
1
n Khn

(x−Xi) for
each i = 1, . . . , n. We have

‖gi‖k =

⎛⎝ k∑
j=0

1

n2

∫
IR

(
K

(j)
hn

(x−Xi)
)2

dx

⎞⎠1/2

=

⎛⎝ 1

n2

k∑
j=0

∫
IR

(
1

hj+1
n

K(j)

(
x−Xi

hn

))2

dx

⎞⎠1/2

=
1

n

⎛⎝ k∑
j=0

1

h2j+1
n

∫
IR

(
K(j)

(
x−Xi

hn

))2

d
x−Xi

hn

⎞⎠1/2

≤
⎛⎝ k∑

j=0

∫
IR

(
K(j) (u)

)2
du

⎞⎠1/2/(
n

√
h2k+1
n

)
.
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Therefore

(2.19) ‖gi‖k ≤ ‖K‖k
/(

n

√
h2k+1
n

)
=: Dn/2.

Note that (K.iv) and (K.v) imply that ‖K‖2k is finite. Observe that (2.19) yields
the bound,

(2.20) ‖Yi‖k ≤ ‖gi‖k + E‖gi‖k ≤ Dn.

We shall control the size of rn(k) using McDiarmid’s inequality, which for conve-
nience we state here.

McDiarmid’s inequality (See Devroye [1]) Let Y1, . . . , Yn be independent random
variables taking values in a set A and assume that the function H : An → IR,
satisfies for each i = 1, . . . , n and some ci,

sup
y1,...,yn,y,∈A

|H(y1, . . . , yi−1, yi, yi+1, . . . , yn)−H(y1, . . . , yi−1, y, yi+1, . . . , yn)| ≤ ci.

then for every t > 0,

P {|H(Y1, . . . , Yn)− EH(Y1, . . . , Yn)| ≥ t} ≤ 2 exp

(
−2t2

/ n∑
i=1

c2i

)
.

Applying McDiarmid’s inequality, in our situation, with

H(Y1, . . . , Yn) =

∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
k

and ci = 2Dn, for i = 1, . . . , n, which comes from (2.20), we obtain for every t > 0,

(2.21) P

{∣∣∣∣∣
∥∥∥∥∥

n∑
i=1

Yi

∥∥∥∥∥
k

− E

∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
k

∣∣∣∣∣ ≥ t

}
≤ 2 exp

(
− t2nh2k+1

n

2‖K‖2k

)
.

Setting t = 2
√
log n/

√
nh2k+1

n into the probability bound in (2.21), we get via the
Borel–Cantelli lemma that with probability 1,

(2.22)

∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
k

= E

∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
k

+O

( √
log n√
nh2k+1

n

)
.

Furthermore, by Jensen’s inequality,(
E

∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
k

)2

≤ E

∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
2

k

=

n∑
i=1

k∑
j=0

E

∫
IR

(
Y

(j)
i (x)

)2
dx,

that is, (
E

∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
k

)2

≤ 1

n2

n∑
i=1

k∑
j=0

∫
IR

E
{
K

(j)
h (x−Xi)− f

(j)
h (x)

}2

dx
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≤ 1

n2

n∑
i=1

k∑
j=0

∫
IR

E

(
1

hj+1
n

K(j)

(
x−Xi

hn

))2

dx

≤ 1

n2h2k+2
n

n∑
i=1

k∑
j=0

∫
IR

E

(
K(j)

(
x−Xi

hn

))2

dx

=
1

n2h2k+2
n

n∑
i=1

k∑
j=0

∫
IR2

(
K(j)

)2(x− y

hn

)
f(y) dydx,

which by using Fubini’s theorem is seen to

(2.23) = ‖K‖2k/
(
nh2k+1

n

)
.

From (2.18), (2.22) and (2.23) we conclude for any positive sequence h = hn con-
verging to zero at the rate (2.6) that Rn = O

(
log n/

(
nh2k+1

n

))
, a.s.

The proof of (2.18) follows similar lines. Therefore we have proved our main
result. �

3. Applications of the representation theorem

3.1. Consistency

As our first application of Theorem 2.1 we shall establish a strong consistency result

for T
(
f̂h

)
.

Theorem 3.1. Assume the conditions of Theorem 2.1. If a positive sequence h =
hn ≤ 1 is chosen so that

(3.1) log n/
(
nh2k+1

n

)→ 0,

then with probability 1, we have, as n → ∞,

(3.2) T (f̂hn
) → T (f) .

Proof of Theorem 3.1. First, by Theorem 2.1 and (3.1),

(3.3) T (f̂hn
)− T (fhn

) = Sn(hn) +Rn with Rn = o(1), a.s.

Let X1, . . . , Xn be i.i.d. with density f. Recall the definition of Φj in (2.9) and set
for i = 1, . . . , n,

(3.4) Zi (hn) :=

k∑
j=0

∫
IR

Φj(fhn
(x), f

(1)
hn

(x), . . . , f
(k)
hn

(x))K
(j)
hn

(x−Xi) dx.

and for future reference write for any h > 0 and X with density f ,

(3.5) Z (h) :=

k∑
j=0

∫
IR

Φj(fh(x), f
(1)
h (x), . . . , f

(k)
h (x))K

(j)
h (x−X) dx.
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In this notation we can write

(3.6) Sn(hn) = n−1
n∑

i=1

{Zi (hn)− EZi (hn)} .

Keeping in mind that (2.5) implies

(3.7)
{(

fh(x), f
(1)
h (x), . . . , f

(k)
h (x)

)
: x ∈ IR

}
⊂ [−κM, κM ]

k+1

and that we can infer from the assumptions on Φ that for some DΦ > 0,

sup
{
|Φj | (y0, y1, . . . , yk) : (y0, y1, . . . , yk) ∈ [−κM, κM ]

k+1
}
≤ DΦ

we get that for 1 ≤ i ≤ n,

|Zi (hn)| ≤
k∑

j=0

∫
IR

|Φj | (fhn
(x), f

(1)
hn

(x), . . . , f
(k)
hn

(x))
∣∣∣K(j)

hn

∣∣∣ (x−Xi) dx

≤ DΦ

k∑
j=0

∫
IR

∣∣∣K(j)
hn

∣∣∣ (x−Xi) dx = DΦ

k∑
j=0

h−j−1
n

∫
IR

∣∣∣K(j)
∣∣∣ (x−Xi

hn

)
dx

= DΦ

k∑
j=0

h−j
n

∫
IR

∣∣∣K(j)
∣∣∣ (u) du ≤ Lh−k

n

for some L > 0. Therefore we can apply Hoeffding’s inequality [6] to get,

P

{
|Sn(hn)| > 2

√
log nL√
nhk

n

}
≤ 2 exp (−2 log n) ,

from which we readily conclude using the Borel–Cantelli lemma that, with proba-
bility 1,

(3.8) Sn(hn) = O

(√
log n/ (nh2k

n )

)
.

Thus whenever
√

logn
nh2k

n
= o(1), then, with probability 1,

(3.9) Sn(hn) = o (1) .

Next we shall show that T (fh) → T (f). Recall by (2.4), for each j = 0, . . . , k,

f
(j)
hn

(x) =

∫
IR

K (v) f (j)(x− hnv) dv,

which by (F.ii), (K.i) and the dominated convergence theorem implies that for each
j = 0, . . . , k,

f
(j)
hn

(x) → f (j)(x) for a.e. x ∈ IR.

Thus for a.e. x ∈ IR, as → ∞,

(3.10) Φ(fhn
(x), f

(1)
hn

(x), . . . , f
(k)
hn

(x)) → Φ(f(x), f (1)(x), . . . , f (k)(x)).
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Write for each j = 0, . . . , k,

g
(j)
hn

(x) =

∫
IR

|K| (v)
∣∣∣f (j)

∣∣∣ (x− hv) dv and g(j) = κ
∣∣∣f (j)

∣∣∣ ,
where κ is as in (K.i). Clearly for each j = 0, . . . , k,

∣∣∣f (j)
hn

∣∣∣ ≤ g
(j)
hn

, and

(3.11) g
(j)
hn

(x) → g(j)(x) for a.e. x ∈ IR.

Notice that for each n ≥ 1 and j = 0, . . . , k,

(3.12)

∫
IR

g
(j)
hn

(x) dx =

∫
IR

∣∣∣g(j)∣∣∣ (x) dx.
Also since Φ (0, . . . , 0) = 0 and Φ is assumed to be differential with continuous
derivatives Φj on C, where C satisfies (2.8), we get by (3.7) and the mean value
theorem that for some MΦ > 0,

(3.13) |Φ| (fhn
(x), f

(1)
hn

(x), . . . , f
(k)
hn

(x)) ≤ MΦ

k∑
j=0

g
(j)
hn

(x), for all x ∈ IR.

From (3.10), (3.11), (3.12) and (3.13), we readily that as n → ∞,

T (fh) =

∫
IR

Φ(fhn
(x), f

(1)
hn

(x), . . . , f
(k)
hn

(x)) dx → T (f) ,

using a standard convergence result that is stated, for instance, as problem 12 on p.
102 of Dudley [3]. It says that if fn and gn are integrable functions for a measure μ
with |fn| ≤ gn, such that as n → ∞, fn (x) → f (x) and gn (x) → g (x) for almost
all x. Then

∫
gn dμ → ∫

g dμ < ∞, implies that
∫
fn dμ → ∫

f dμ.

Therefore whenever T
(
f̂h

)
− T (fh) = o (1) a.s., we have

(3.14) T
(
f̂h

)
− T (f) → 0 a.s.

Now (3.1), i. e., logn

nh2k+1
n

→ 0, implies logn
nh2k

n
→ 0. Thus both (3.3) and (3.9) hold,

which imply (3.14). �

Remark 3.2. In the case k = 0, Theorem 3.1 generalizes the first part of Theorem
2 in [8] from k = 0 to k ≥ 0 and to a larger class of functions Φ. Moreover, the
proof of Theorem 3.1 completes that of the first part of Theorem 2 of [8]. A final
easy step showing that T (fh) → T (f) is missing there.

3.2. Central limit theorem

In this section we shall use Theorem 2.1 to establish a central limit theorem for
T
(
f̂h

)
. Before stating and proving our result, we must first introduce some addi-

tional assumptions and then derive a limiting variance needed in its formulation.

Assumptions on the density f .
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(F.iv) Assume that for some 0 < M < ∞, |f(x)| ≤ M for x ∈ IR, and if k ≥ 1 then
f is 2k-times continuously differentiable and its derivatives f (j) satisfy for x ∈ IR,
|f (j)(x)| ≤ M < ∞, j = 1, . . . , 2k.

Assumptions on the kernel K.

We assume conditions (K.i)-(K.v) on the kernel.

Assumptions on Φ.

Φ : Rk+1 → R, k ≥ 0, such that Φ (0, . . . , 0) = 0 and all of its partial derivatives in
y0, . . . , yk,

∂m0

∂ym0
0

. . .
∂mk

∂ym0

k

Φ(y0, . . . , yk),

where

m0 +m1 + · · ·+mk = j, 0 ≤ j ≤ k + 1,

are continuous on an open convex set C containing [−κM, κM ]
k+1

and they are
uniformly bounded on C by a constant BΦ > 0.

Preliminaries to calculating a variance

Let p and q be m times continuously differentiable functions such that for each
0 ≤ j ≤ m

(3.15) lim
v→∞ p(j) (±v) q(m−j) (±v) = 0.

We shall be use the formula following from integration by parts and (3.15):

(3.16)

∫
R

p(m) (v) q (v) dv = (−1)
m
∫
R

p (v) q(m) (v) dv.

Set

f
(j)
h (y + hu) =

∫
IR

h−j−1K (j)

(
y − t

h
+ u

)
f(t) dt,

which by the change of variable v = y−t
h + u or t = y + h (u− v)

=

∫
IR

h−jK (j) (v) f(y + h (u− v)) dv.

Applying, in turn, the formula (3.16) we get

(3.17) f
(j)
h (y + hu) =

∫
IR

K (v) f (j)(y + h (u− v)) dv.

Notice from (3.17), (F.iv) and (K.i), we get from the bounded convergence theorem
that for every 0 ≤ j ≤ 2k and a.e. y ∈ IR

(3.18) f
(j)
h (y + hu) → f (j)(y).

Let Ψ be a function from IRk+1 → IR satisfying the assumptions on Φ and set
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(3.19) Ψ (y) = Ψ
(
f(y), f (1)(y), . . . , f (k)(y)

)
and

(3.20) Ψ (y, h) = Ψ
(
fh(y), f

(1)
h (y), . . . , f

(k)
h (y)

)
.

Notice that we have

(3.21) Ψ (y + hu, h) = Ψ
(
fh(y + hu), f

(1)
h (y + hu), . . . , f

(k)
h (y + hu)

)
.

Clearly by (3.18), Ψ (y + hu, h) → Ψ(y). Let for j = 0, . . . , k,

Ψj (y0, y1, . . . , yk) =
∂Ψ(y0, y1, . . . , yk)

∂yj
.

Further set for j = 0, . . . , k,

Ψj (y) = Ψj

(
f(y), f (1)(y), . . . , f (k)(y)

)
and

Ψj (y, h) = Ψj

(
fh(y), f

(1)
h (y), . . . , f

(k)
h (y)

)
.

Note that we have

Ψj (y + hu, h) = Ψj

(
fh(y + hu), f

(1)
h (y + hu), . . . , f

(k)
h (y + hu)

)
.

We see that

dΨ(y + hu, h)

du
= h

⎛⎝ k∑
j=0

Ψj (y + hu, h) f
(j+1)
h (y + hu)

⎞⎠ .

Write

Ψ(1) (y0, y1, . . . , yk+1) =
k∑

j=0

Ψj (y0, y1, . . . , yk) yj+1,

and observe that

Ψ(1) (y) :=
d

dy
Ψ(y) = Ψ(1)

(
f (y) , . . . , f (k+1) (y)

)
.

We see that
dΨ(y + hu, h)

du
= hΨ(1) (y + hu, h) ,

where
Ψ(1) (y + h, h) = Ψ(1)

(
fh (y + hu) , . . . , f

(k+1)
h (y + hu)

)
.

We shall write
Ψ(1) (y, h) = Ψ(1)

(
fh (y) , . . . , f

(k+1)
h (y)

)
.

Now for m ≥ 1 set

Ψ
(m−1)
j (y0, y1, . . . , yk+m−1) =

d

dyj
Ψ(m−1) (y0, y1, . . . , yk+m−1) , 0 ≤ j ≤ k +m− 1.
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Here Ψ(0) = Ψ and Ψ
(0)
j = Ψj . Also let

Ψ(m) (y0, y1, . . . , yk+m) =

k+m−1∑
j=0

Ψ
(m−1)
j (y0, y1, . . . , yk+m−1) yj+1,

and note that

Ψ(m) (y) :=
dm

dym
Ψ(y) = Ψ(m)

(
f (y) , . . . , f (k+m) (y)

)
.

Set

Ψ(m) (y + h, h) = Ψ(m)
(
fh (y + hu) , . . . , f

(k+m)
h (y + hu)

)
and

Ψ(m) (y, h) = Ψ(m)
(
fh (y) , . . . , f

(k+m)
h (y)

)
.

We readily get that

(3.22)
dmΨ(y + hu, h)

dum
= hmΨ(m) (y + hu, h)

and, as h ↘ 0,

(3.23) h−m dmΨ(y + hu, h)

dum
= Ψ(m) (y + hu, h) → Ψ(m) (y) =

dm

dym
Ψ(y) .

Computation of limit variance

We are now prepared to compute our limiting variance. Let Φj (x) and Φj (x, h) be
defined exactly as Ψj (x) and Ψj (x, h). Recall the definition of Sn(h) in (2.13) and
that of Z (h) in (3.5). We can write

Sn(h) =
k∑

j=0

∫
IR

Φj (x, h)
(
f̂

(j)
h (x)− f

(j)
h (x)

)
dx.

and

Z (h) =
k∑

j=0

∫
IR

Φj (x, h)h
−j−1K (j)

(
x−X

h

)
dx.

Thus we see that if Z1 (h), . . . , Zn (h) are i.i.d. Z (h), then

Sn(h) =d n−1
n∑

i=1

(Zi (h)− EZi (h)) .

Now

EZ (h) =
k∑

j=0

∫
IR

[∫
IR

Φj (x, h)h
−j−1K (j)

(
x− y

h

)
dx

]
f (y) dy

(3.24) =
k∑

j=0

∫
IR

[∫
IR

Φj (y + hu, h)h−jK (j) (u) du

]
f (y) dy.
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Note that we get from (3.16) and (3.22), the identity

(3.25)

∫
IR

Φj (y + hu, h)h−jK (j) (u) du = (−1)
j
∫
IR

Φ
(j)
j (y + hu, h)K (u) du,

and from (3.23) we conclude that for a.e. y ∈ IR and all u, as h ↘ 0,

(3.26) Φ
(j)
j (y + hu, h) → dj

dyj
Φj

(
f(y), f

(1)
h (y), . . . , f

(k)
h (y)

)
=: Φ

(j)
j (y) .

Set

(3.27) μk (y) =

k∑
j=0

(−1)
j
Φ

(j)
j (y) .

Note that our assumptions imply that for someB > 0 and all h > 0 and j = 0, . . . , k,

max
0≤j≤k

sup
u,y

∣∣∣Φ(j)
j (y + hu, h)

∣∣∣ ≤ B and thus
∣∣∣Φ(j)

j (y + hu, h)K(u)
∣∣∣ ≤ B |K| (u) .

Therefore by (3.26) and the dominated convergence theorem as h ↘ 0

H
(j)
h (y) :=

∫
IR

Φ
(j)
j (y + hu, h)K (u) du → Φ

(j)
j (y) .

Now
∣∣∣H(j)

h (y)
∣∣∣ ≤ B

∫
IR
|K| (u) du = Bκ. Hence by the bounded convergence theo-

rem ∫
IR

H
(j)
h (y) f (y) dy →

∫
IR

Φ
(j)
j (y) f (y) dy.

This of course implies that as h → 0,

EZ (h) →
∫
IR

⎧⎨⎩
k∑

j=0

(−1)
j
Φ

(j)
j (y)

⎫⎬⎭ f(y) dy =

∫
IR

μk (y) f(y) dy = Eμk (X) .

Next write for 0 ≤ j,m ≤ k,

γj,m (y) =

∫
IR2

Φj (x, h) Φm (z, h)h−2−j−mK (j)

(
x− y

h

)
K (m)

(
z − y

h

)
dxdz

=

∫
IR2

Φm (y + hu, h) Φj (y + hv, h)h−j−mK (j) (u)K (m) (v) dvdu.

Similarly we see that

Eγj,m (X) → (−1)
m+j

∫
IR

Φ(m)
m (y) Φ

(j)
j (y) f (y) dy.

Therefore since

EZ2 (h) =
k∑

j=0

k∑
m=0

∫
IR

γj,m (y) f (y) dy,

we conclude that as h → 0,

EZ2 (h) →
k∑

j=0

k∑
m=0

∫
IR

Φ(m)
m (y) Φ

(j)
j (y) (−1)

m+j
f (y) dy = Eμ2

k (X) .
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Clearly the same proof shows that as h → 0, EZ4 (h) → Eμ4
k (X) .

Also it is readily verified that Eμk (X), Eμ2
k (X) and Eμ4

k (X) are finite under
the conditions on Φ and f . In summary, we get

Lemma Under the above assumptions for any sequence of positive numbers hn → 0,
as n → ∞,

(3.28) nV ar (Sn(hn)) = V ar (Z(hn)) → V ar (μk (f (X))) =: σ2 (f) < ∞
and

(3.29) EZ4 (hn) → Eμ4
k (X) < ∞.

Part (2.16) of Theorem 2.1 and the above lemma, combined with Lyapunov’s
central limit theorem, yield the next result.

Theorem 3.3. Under the above assumptions imposed in this subsection on the
density f , the kernel K and function Φ, if a positive sequence h = hn ≤ 1 is chosen
so that 1/

(√
nh2k+1

n

)→ 0 then

(3.30)
√
n
{
T (f̂h)− T (fh)

}
→d N

(
0, σ2 (f)

)
.

In the next subsection, we shall discuss smoothness conditions that permit the
replacement of T (fh) by T (f) in (3.30).

3.3. Three examples of the application of Theorem 3.3

In this subsection we apply Theorem 3.3 to the three examples (i), (ii) and (iii)
in (1.2). In the first two k = 0, so in addition to the smoothness conditions in
our central limit theorem, we require

√
nhn → ∞. In example (i), μ0(f (x)) =

Φ1 (f (x)) , where Φ1 (x) = d
dx (φ (x)x) , giving σ2 (f) = V ar (Φ1 (f (X))) . This

matches with the second part of Theorem 2 of [8]. In example (ii), one gets that
μ0(f (x)) = Φ′ (f (x)) and σ2 (f) = V ar (Φ′ (f (X))) . This agrees with Theorem
3 of [5]. Note that example (i) is a special case of (ii). To apply Theorem 3.3 to
example (iii) we must choose hn such that

√
nhk+1

n → ∞. In this case μk(f (x)) =
2f (2k) (x), and σ2 (f) = V ar

((
2f (2k) (X)

))
, which is in agreement with Theorem

4 of [5].

Let us now briefly discuss conditions under which we can replace T (fh) by T (f)
in (3.30). Towards this end, we cite here Proposition 1 of [5], which, in turn, was
motivated by Proposition 1 of [7].

Proposition 3.4. Assume that K is integrable, has compact support, and for some
integer s ≥ 1,

(3.31)

∫
IR

K(u) du = 1,

∫
IR

ukK(u) du = 0 for k = 1, . . . , s,

and let H be a non-negative measurable function. Then there is a constant CK > 0
such that, for every s times continuously differentiable function g satisfying for
some h0 > 0, Lg > 0, 0 < α ≤ 1,

(3.32) sup
|h|≤h0

|h|−α
∣∣∣g(s) (x+ h)− g(s) (x)

∣∣∣ =: LgH(x), for every x ∈ IR,
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one has, for all 0 < h ≤ h0 and every x ∈ IR,

(3.33)

∣∣∣∣ 1h
∫
IR

g (u)K

(
x− u

h

)
du− g (x)

∣∣∣∣ ≤ hs+αCKLgH(x).

Therefore if our kernel K also has compact support and satisfies (3.31) with
s = 1 and our density f fulfills condition (3.32) with α = 1 and H ∈ L1 (IR), then
for all h > 0 small enough, for every Φ, which is Lipschitz on [−κM, κM ], there
exists a constant B > 0 such that∣∣∣∣∫

IR

Φ(fh (x)) dx−
∫
IR

Φ(f (x)) dx

∣∣∣∣ ≤ h2B

∫
IR

H(x) dx.

Thus if we have both
√
nhn → ∞ and

√
nh2

n → 0, we can conclude in examples (i)
and (ii) that

(3.34)
√
n
(
T
(
f̂hn

)
− T (f)

)
→d N

(
0, σ2 (f)

)
.

We can also apply this proposition to example (iii) for any k ≥ 1. Here, in order
to be able to replace T (fh) by T (f), we require that both

√
nh2k+1

n → ∞ and√
nhs+α

n → 0, where s and α satisfy (3.32) and (3.33).
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