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Measuring directional dependency

Yadolah Dodge1 and Iraj Yadegari2

Abstract: In this article we propose new methods for finding the direction
of dependency between two random variables which are related by a linear
function.

1. Introduction

The concepts of regression and correlation has been discovered by Francis Galton
and Karl Pearson at the turn of the 20th century. The Galton–Pearson correlation
coefficient is probably the most frequently used statistical tool in applied sciences,
and up to now different interpretations for it has been provided. Rodgers and Nice-
wander [8] provided thirteen interpretations for it. Rovine and von Eye [9], and
Falk and Well [5] show a collection of algebraic and geometric interpretation of the
correlation coefficient. An elegant property of the correlation coefficient similar to
that of given random variable which is defined by its mean and variance can be
found in Nelsen [7] who shows shows that the correlation coefficient is equal to the
ratio of a difference and a sum of two moments of inertia about certain line in the
plane. Dodge and Rousson [1] provided four new asymmetric interpretations in case
of symmetrical error in the linear relationship of two variables including the cube of
the correlation coefficient. Using the relationship found in their paper, and assum-
ing the existence of linear relation between two random variables, they determined
the direction of dependence in linear regression model. That is, they provided a
model on the basis of which one can make a distinction between dependent and in-
dependent variables in a linear regression. The directional dependence between two
variables, when they follow the Laplace distributions, were provided by Dodge and
Whittaker [3] using graphical model approach. Muddapur [6] arrives at the same
relationship and found yet another formula between the correlation coefficient and
the ratio of two coefficients of kurtosis. However, the author does not indicate how
it could be used in determining the direction of dependence between two variables
in simple linear regression.

Dodge and Yadegari [4] presented five new asymmetric faces of the correlation
coefficient. One of these formulas is the fourth power of the correlation coefficients
and ratio of coefficients of excess kurtosis of response and explanatory variable. Also,
they showed that, in the regression through the origin, the coefficient of correlation
is equal to the ratio of coefficients of variation of explanatory variable to response
variable. Thus, the coefficient of variation of response variable is larger that the
coefficient of variation of explanatory variable.
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In Section 2 we review some asymmetric formulas for the correlation coefficient,
and in Section 3 the concept of the directional dependency between two variables
is presented and procedures for determining the direction of dependency between
response and explanatory variables in linear regression are discussed. In Section 4
we provide asymmetric measures of directional dependency in linear regression.

2. Some asymmetric faces of the correlation coefficient

Rodgers and Nicewander [8], Rovine and von Eye [9], Falk and Well [5] and Nelsen
[7] provided different faces of the correlation coefficient which was discussed by
Dodge and Rousson [1, 2] and Dodge and Yadegar in [4]. Also, we present a new
face of correlation coefficient. Later we use some of these formulas for determining
the direction of dependency between two variables.

Let us consider two random variables X and Y that are related by

Y = α+ βX + ε,(2.1)

where the skewness and the excess kurtosis coefficients of the random variables X
and Y are not zero, α is the intercept, β is the slope parameter and ε is an error
variable that is independent of X and has normal distribution with zero mean and
fixed variance. The correlation coefficient between two random variables X and Y
is defined as follows

ρ =
Cov(X,Y )

σXσY
,(2.2)

where Cov(X,Y ) is covariance between X and Y , σ2
X and σ2

Y are variances of X
and Y , respectively. Under the linear model (2.1) we have

ρ = β
σX

σY
.(2.3)

Since X is independent of ε, starting with (2.1) we can write

σ2
Y = β2σ2

X + σ2
ε

and using (2.3) we have

1− ρ2 =

(
σε

σY

)2

.(2.4)

Afterwards we easily obtain(
Y − μY

σY

)
= ρ

(
X − μX

σX

)
+ (1− ρ2)

1
2

(
ε− με

σε

)
.(2.5)

2.1. Cube of the correlation coefficient

The classical notion of skewness is given in the univariate case by the standardized
third central moment. The coefficient of skewness of X is

γX = E
(X − μX

σX

)3
.(2.6)

Dodge and Rousson [1] have proved that under the assumption of symmetry of
the error variable and under model (2.1), the cube of the correlation coefficient is
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equal to the ratio of the skewness of the response variable and the skewness of the
explanatory variable. We can derive it in the same way. From third power of both
sides of (2.5) and under expectation we have

γY = ρ3γX + (1− ρ2)
3
2 γε,

where γε is the skewness coefficient of the error variable. If the error variable is
symmetric, γε = 0, then

ρ3 =
γY
γX

(2.7)

as long as γX �= 0.

2.2. The 4th power of the correlation coefficient

The coefficient of excess kurtosis of random variable X is defined by

κX = E
(X − μX

σX

)4
− 3.(2.8)

Dodge and Yadegari [4] showed that under the assumption of symmetry of the
error variable and under model (2.1), the 4th power of the correlation coefficient
is equal to the ratio of the kurtosis of the response variables and the kurtosis of
the explanatory variable. From the 4th power of both sides of (2.5) and under
expectation, and after simplification and using (2.4) we have

κY = ρ4κX + (1− ρ2)2κε.

If κε = 0, we have (as long as κX �= 0)

ρ4 =
κY

κX
.(2.9)

This formula has a natural interpretation: add a symmetric error to an explanatory
variable and you get a response variable with less kurtosis. Also, the fourth power
of the correlation may be described as the percentage of kurtosis which is preserved
by a linear model.

2.3. The 5th power of the correlation coefficient

If we assume that X and Y are asymmetric, from the fifth power of both sides of
(2.5) and under expectation we can obtain

E

(
Y − μY

σY

)5

= ρ5E

(
X − μX

σX

)5

+ C5
3

(
ρ3γX(1− ρ2) + ρ2(1− ρ2)

3
2 γε

)

+(1− ρ2)
5
2E

(
ε− με

σε

)5

,(2.10)

where Cm
n = m!

n!(m−n)! . If we assume that E
(

ε−με

σε

)3
= E

(
ε−με

σε

)5
= 0, then from

(2.7) and (2.10) we have(
E

(
Y − μY

σY

)5

− C5
3γY

)
= ρ5

(
E

(
X − μX

σX

)5

− C5
3γX

)
.(2.11)
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Hence, we obtain a new expression for the correlation coefficient:

ρ5 =
E
(

Y−μY

σY

)5
− C5

3γY

E
(

X−μX

σX

)5
− C5

3γX

.(2.12)

This formula represents another asymmetric face of the correlation coefficient.

2.4. The ratio of excess kurtosis to skewness

By dividing equation (2.9) to equation (2.7) we obtain

ρ =
κY /γY
κX/γX

.(2.13)

The equation (2.12) signifies that we can express the correlation coefficient as a ratio
of a function of Y to the same function of X. This ratio is an asymmetric function
of the excess kurtosis and the skewness coefficients of dependent and independent
random variables.

2.5. Asymmetric function of Joint Distribution

Another asymptotic formula for ρ under model (2.1) may be obtained by introduc-
ing higher order correlations

ρij(X,Y ) = E

[(
X − μX

σX

)i(
Y − μY

σY

)j
]
.

We can obtain a beautiful formula for ρ as

ρ =
ρ12(X,Y )

ρ21(X,Y )
.(2.14)

Result (2.14) shows a different asymmetric face of correlation which comes from
joint distribution of X and Y (Dodge and Rousson [1, 2]).

2.6. The ratio of two coefficients of variation

The coefficient of variation of random variable X, denoted by CVX , is defined as

CVX =
σX

μX
.(2.15)

The correlation coefficient can also be expressed as the ratio of two coefficients
of variation of random variables related by a linear regression forced from origin
(Dodge and Yadegari [4]). Let us consider two random variables X and Y that are
related by regression model

Y = βX + ε,(2.16)

where ε is an error variable with zero mean and fixed variance that is independent
of X and β ∈ R is a constant. In the model (2.16) we have μY = βμX , then

ρ =
CVX

CVY
.(2.17)

From equation (2.17) we conclude that the coefficient of variation of the response
variable will always be greater than the coefficient of variation of the explanatory
variable.
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3. Determining direction of dependence

Consider the situation that a linear relationship exists between two random vari-
ables X and Y in the following form

Y = α+ βX + ε.(3.1)

In (3.1) the random variable Y is a linear function of the random variable X, and X
is assume to be independent of the error variable ε. In this situation we say that the
response variable Y depends on the variable X, and the direction of dependency is
from X to Y . Equation (3.1) can also be thought as a causal relationship between
explanatory variable (cause) and response variable (effect). If X causes Y , then we
select the model (3.1). On the other hand, if Y causes X, then we select the model

X = α′ + β′Y + ε′.(3.2)

In (3.2) the error variable ε′ is independent of the explanatory variable Y . In both
models (3.1) and (3.2) we assume that the error variable has a normal distribution
with zero mean and fixed variance.

If we wish to investigate the direction of dependency, we may hesitate between
model (3.1) and model (3.2). To answer such a question, Dodge and Rousson [1]
and Dodge and Yadegari [4] proposed some methods for determining the direction
of dependency in the linear regression based on the assumption that the skewness
or kurtosis coefficient of the error variable is zero.

In what follows, we change the problem of determining the direction of depen-
dence to the problem of comparing two dependent variances or two dependent
coefficients of skewness, kurtosis and variation.

3.1. Using joint distribution

Dodge and Rousson [2] has showed an asymmetric face of correlation coefficient,
that no assumption is needed about the error variable (except its independence
with the explanatory variable).

ρXY =
ρ12(X,Y )

ρ21(X,Y )
.(3.3)

This formula can be obtained from joint distribution. They used formula (3.3) to
determine the direction of dependence between X and Y . Since |ρXY | ≤ 1,

ρ212(X,Y ) ≤ ρ221(X,Y ).(3.4)

Thus, Y is a response variable. A similar argument can be provided for the linear
regression dependence of X on Y . Then, ρ212(X,Y ) ≤ ρ221(X,Y ) implies Y is the
response variable and ρ212(X,Y ) ≥ ρ221(X,Y ) implies X is the response variable.

3.2. Comparing skewness coefficients

Dodge and Rousson [2] showed that under assumption of symmetry of the error
variable and under model (3.1), the cube of the correlation coefficients is equal to the
ratio of the skewness of the response variable and the skewness of the explanatory
variable:

ρ3XY =
γY
γX

,(3.5)



Measuring directional dependence 67

(as long as γX �= 0). They used formula (3.5) to determine the direction of depen-
dence between X and Y . Since |ρXY | ≤ 1,

γ2
Y ≤ γ2

X .(3.6)

Thus, the direction of dependence is from X to Y (Y is a response variable). A
similar argument can be provided for the linear regression dependence of X on Y .
Then, γ2

X ≥ γ2
Y implies Y is the response variable and γ2

X ≤ γ2
Y implies X is the

response variable.

3.3. Comparing kurtosis coefficients

Dodge and Yadegari [4] gave another method that works in symmetric and asym-
metric situations. Under model (2.1), the fourth power of the correlation coefficient
is equal to the ratio of kurtosis of the response variable to the kurtosis of the
explanatory variable, (as long as κX �= 0)

ρ4 =
κY

κX
,(3.7)

where κX and κY are kurtosis coefficients of X and Y respectively (as long as
κX �= 0). Since ρ4 ≤ 1

κY ≤ κX .(3.8)

This shows that the kurtosis of the response variable is always smaller than the
kurtosis of the explanatory variable. Then, for a given ρXY , κX ≥ κY implies Y is
the response variable and κX ≤ κY implies X is the response variable.

We can similarly use inequalities (2.13) and the 5th power of the correlation
coefficient (2.12) to assessing direction of dependence in a linear regression.

3.4. Comparing coefficients of variation

Now consider the situation that a linear relationship exists between two random
variables X and Y in the following form

Y = βX + ε.(3.9)

If X causes Y , then we select the model (3.9). In the other hand, if Y causes X,
then we select the model

X = β′Y + ε′.(3.10)

In (3.10) the error variable ε′ is independent of the explanatory variable Y . In both
models (3.9) and (3.10) we assume that the error variable has a zero mean and fixed
variance. Under assumptions of the model (3.9) and from (3.10), we can conclude
that

ρ =
CVX

CVY
.(3.11)

Thus, the coefficient of variation of response variable is larger than the coefficient
of variation of explanatory variable.
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3.4.1. Special case (comparing variables)

Let us consider two random variables X and Y , where a linear relationship exists
between them in the following form

Y = X + ε(3.12)

or

X = Y + ε′.(3.13)

Under model (3.12) we have ρ2 =
σ̂2
X

σ2
Y

(obtained from (2.3) when β = 1) and then

σ2
Y > σ2

X , and under model (3.13) we can obtain that σ2
Y < σ2

X . Then, the variance
of the explanatory variable is always smaller than the variance of the response
variable. Then, σ2

Y > σ2
X implies Y is the response variable and σ2

Y < σ2
X implies

X is the response variable.

4. Measures of the directional dependency

We say that the direction of dependency is from X to Y , denoted by X → Y , if a
linear relationship exists between random variables X and Y in the following form

Y = α+ βX + ε,(4.1)

where α is the intercept and β is the slope parameter and ε is an error variable
that is independent of X and has a normal distribution with zero mean and a fixed
variance. For measuring amount of asymmetric dependency between X and Y we
cannot use the Galton–Pearson correlation coefficient, because the Galton–Pearson
correlation is a symmetric measure of dependency between two random variables.
In situations where we have asymmetric measures of dependency, we can present
new procedures for determining the direction of dependency. Using the skewness
and kurtosis coefficients, in this section, we propose two new asymmetric measures
of dependency to distinguish the response from explanatory variable.

Let us consider two random variables X and Y that are related by a linear
relationship (4.1). We define another directional correlation coefficient as

S(X → Y ) =
γ2
X

γ2
X + γ2

Y

.(4.2)

Here are some properties of this measure:

1. 0 < S(X → Y ) < 1

2. S(Y → X) = 1− S(X → Y )

3. If γ2
Y ≤ γ2

X , then S(Y → X) ≤ S(X → Y )

4. If γ2
X = γ2

Y , then S(X → Y ) = S(Y → Y ) = 1
2

5. If γ2
Y < γ2

X , then 1
2 < S(X → Y ) < 1

6. If γ2
Y > γ2

X , then 0 < S(X → Y ) < 1
2 .

Thus, S(X → Y ) > S(Y → X) implies Y is the response variable and S(X →
Y ) < S(Y → X) implies X is the response variable.
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We can use the kurtosis coefficients to introduce another asymmetric measures of
dependency between two random variables, which measures the directional depen-
dency. Under the model (4.1), we define a measure of the directional dependence
in this model as

K(X → Y ) =
κ2
X

κ2
X + κ2

Y

.(4.3)

Here are some properties of the kurtosis-based directional correlation:

1. 0 < K(X → Y ) < 1

2. K(Y → X) = 1−K(X → Y )

3. If κX = κY , then K(X → Y ) = K(Y → X) = 1
2

4. If κ2
Y < κ2

X , then 1
2 < K(X → Y ) ≤ 1

5. If κ2
Y ≤ κ2

X , then K(Y → X) ≤ K(X → Y )

6. If κ2
Y > κ2

X , then 0 ≤ K(X → Y ) < 1
2 .

Thus, K(X → Y ) > K(Y → X) implies Y is the response variable and K(X →
Y ) < K(Y → X) implies X is the response variable.
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