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Jaromı́r Antoch1 , Luboš Prchal1,2 and Pascal Sarda2

Charles University of Prague and Université Paul Sabatier Toulouse

Abstract: The problem of testing equivalence of two ROC curves is ad-
dressed. A transformation of corresponding ROC curves, which motivates a
test statistic based on a distance of two empirical quantile processes, is sug-
gested, its asymptotic distribution found and a simulation scheme proposed
that enables us to find critical values.

1. Introduction

Receiver operating characteristic (ROC) curves are a popular and widely used tools
that can help to summarize the overall performance of diagnostic methods and/or
classifiers assigning individuals g ∈ G = G0 ∪G1,G0 ∩G1 = ∅, into one of the groups
G0 or G1. Typically, the G1 individuals hold a feature of interest and are referred to
as positives, while the G0 individuals are without the feature and are referred to as
negatives.

Assume that a suitable diagnostic measure Y is available. By convention, the
larger values of Y are supposed to be more indicative for an individual to belong
to G1, so that if Y ≥ t, t ∈ R is a fixed threshold, then an individual is assigned to G1.
On the contrary, if Y < t then it is assigned to G0. Let us introduce probabilities
F0(t) = P(Y ≤ t | G0) and F1(t) = P(Y ≤ t | G1). It is evident that F0(t) and F1(t)
as functions of t are distribution functions of the diagnostic variable Y for the G0

and G1 groups, so that we can denote the corresponding random variables by Y0
and Y1. With this notation in mind, one possible way is to define ROC functions
as mapping �(·;F0, F1), where

�( · ;F0, F1) : R → [0, 1]× [0, 1]

t 
→ [
1− F0(t), 1− F1(t)

]
.

(1)

In other words, it is a curve in a unit square [0, 1] × [0, 1] square consisting of
1−F1(t) on the vertical axis plotted against 1−F0(t) on the horizontal axis for all
t ∈ R. We refer the readers to the monographs Zhou et al. [32] and Pepe [23] for
the properties and applications of ROC curves.

In practice, ROC curves are often used to compare several diagnostic methods
(classifiers). It is usually accepted that the method with a corresponding ROC curve
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closest to the point (0, 1) is the best one for the particular problem. However, this
oversimplified rule is not easily applicable in practice because ROC curves in many
applications are mostly non convex and the effect on the analysis can be non-trivial.
Some examples are presented in this paper. Figure 1 displays three plots, each with
a pair of ROC curves corresponding to different association measures suitable for
the collocation extraction. It illustrates three typical situations that we come across.
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Fig. 1. Examples of ROC curves for several linguistic measures
described in Pecina and Schlesinger [22].

First, everyone would agree that the solid curve in Figure 1a outperforms the
dashed one. Figure 1b seems to be the opposite case, because both association
measures provide, at least optically, equivalent ROC curves. Finally, the situation
in Figure 1c is not at all clear. On one hand the solid line is much closer to the
point (0, 1). On the other hand, the curves are crossing and it is not at all clear
which of them we should prefer. In all three cases, nevertheless, a natural question
arises: Are these ROC curves significantly different?

Several methods exist for testing the equivalence of two ROC curves. The pioneer
work, proposed for normally distributed variables, was Greenhouse and Mantel [11],
later extended by Weiand et al. [30] and Beam and Wieand [2]. The most widely
used current approach is based on the AUC (area under the curve), proposed by
Bamber [1] and developed further by, e. g., Hanley and McNeil [13] and Delong et
al. [6]. A totally different approach to testing is based on a permutation principle
suggested by Venkatraman and Begg [29]. Additional parametric methods, mainly
connected to the binormal ROC curves and their transformations, have been also
developed. We refer to Zhou et al. [32] for the review of the parametric ROC curve
modeling.

In practice it is usual that we do not have any a priori information about the
form of the underlying distribution of Y . In such a case a parametric approach is
not appropriate. Since we often deal with curves possibly crossing each other as
in Figure 1c, the AUC test does not work, since the crossing curves may have the
same AUC but represent diagnostic methods with completely different properties.
However, in case of large sample sizes, large numbers of considered ROC curves dis-
qualify the use of the permutation principle or other resampling techniques because
they are unsupportable from a computational point of view.

All of these considerations motivated us to suggest a new test of equivalence of
two ROC curves. The basic idea is to transform the testing problem and consider
the methods separately in groups G0 and G1 rather than to compare the ROC curves
themselves. We believe that this alternative approach covers a large field of ROC
settings and might open new perspectives of a ROC curve analysis as a whole.
It leads to a test statistic based on the difference between the quantile processes
associated with diagnostic variables of each group, and enables us to determine the
asymptotic distribution under the null hypothesis of ROC curves equivalence. These
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points are discussed in Section 2, where a more precise setting for ROC curves and
their estimators are presented as well.

Regarding estimation of F0(t) and F1(t), we use the empirical cumulative distri-
bution function (CDF). The main competitor of the empirical CDF is the smooth
kernel CDF estimator that possesses some theoretical and “visual” advantages for
CDF and ROC curve estimation. For details see, e. g., Falk [9] or Zhou et al. [33].
However, in the case of large sample size of data the possible advantage of the ker-
nel ROC curve appears to be completely negligible. On the other hand, estimating
ROC curves and testing their equivalence are totally different tasks. In our expe-
rience, the kernel estimator does not substantially improve the testing procedure,
whereas the empirical CDF estimator is easier to apply. Nevertheless, in other prac-
tical situations the kernel approach can be useful, at least as an alternative to the
empirical CDF. It is shown that all theoretical results remain true when testing is
based on either the empirical or the kernel estimators.

The rest of the paper is organized as follows. Section 2 contains the hypothesis
formulation, description of the test procedure, discussion about finding critical val-
ues and the use of the kernel estimators instead of the empirical ones. The proofs
of the theoretical results formulated in Section 2 are given in Appendix.

2. Test of equivalence of two ROC curves

2.1. Hypothesis formulation

Let Y be a diagnostic variable with distribution functions F0(t) and F1(t), and let
Y0 and Y1 denote corresponding random variables as introduced in Section 1 above
formula (1). Denote, according to (1), the ROC curve associated to Y by

(2) ROCY =
{
r ∈ [0, 1]2 : ∃ t ∈ R �(t;F0, F1) = r

}
.

Moreover, assume that:

(C1) Y0 and Y1 have continuous distributions with densities f0(t) and f1(t) such
that f0(t) > 0 and f1(t) > 0 on the same interval IY ⊆ R, and that the
densities are equal to zero outside IY .

(C2) Y0 and Y1 are independent.

Remarks.

(i) Model assumption (C1) on supports assures one-to-one mapping between the
thresholds and ROC points in the unit square [0, 1]× [0, 1] square. This tech-
nically simplifies the notation used later, but it can be relaxed if one properly
takes into account the relationship between t and the ROC curve

(ii) Assumption (C2) means that diagnostic variable Y0 keeps only the information
assuring that negatives belong to G0, while diagnostic variable Y1 keeps only
the information assuring that positives belong to G1.

Let us introduce another diagnostic variable Z with the distribution functions
G0(t) and G1(t), denoting the corresponding ROC curve by

(3) ROCZ =
{
r ∈ [0, 1]2 : ∃ t ∈ R �(t;G0, G1) = r

}
,

and assume that Z0 and Z1 also satisfy conditions (C1) and (C2) with densities
g0(t) and g1(t) on some IZ . Our main goal is to compare these two ROC curves;
more precisely, we aim to test equivalence of ROCY and ROCZ .
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Taking into account the definition of ROC curves, the equivalence of ROCY and
ROCZ means that for any particular point rY ∈ ROCY there exists an “identical”
point rZ ∈ ROCZ , i. e. rY = rZ . Equivalently, for any threshold tY ∈ IY the
equivalence of the curves assures that we can find a threshold tZ ∈ IZ such that
�(tY ;F0, F1) = �(tZ ;G0, G1). This allows us to express the ROC equivalence in
terms of distribution functions, i. e.

ROCY ≡ ROCZ ⇐⇒(4)

∀ tY ∈ IY ∃ tZ ∈ IZ : F0(tY ) = G0(tZ) & F1(tY ) = G1(tZ).

Due to (C1), all considered distribution functions are strictly increasing on IY ,
IZ respectively, so that there exist increasing transformation functions τ0, τ1 : IY →
IZ relating separately distribution functions in group G0 and G1. Define functions
τ0(t) and τ1(t) such that F0(t) = G0

(
τ0(t)

)
and F1(t) = G1

(
τ1(t)

)
, i. e.,

(5) τ0(t) = G−1
0

(
F0(t)

)
and τ1(t) = G−1

1

(
F1(t)

) ∀ t ∈ IY .

ROC curves consist of the values of distribution functions evaluated simultaneously
at the same thresholds. Therefore, they are equivalent if and only if the groups G0

and G1 are related by the same threshold transformations τ0(t) ≡ τ1(t). Hence, we
may formulate the null hypothesis of the two ROC curves equivalence as

(H) τ0(t) = τ1(t) ∀ t ∈ IY ,

which we aim to test against the alternative

(A) ∃ JY ⊆ IY ,JY �= ∅, such that τ0(t) �= τ1(t) ∀ t ∈ JY .

Before deriving a test statistic, let us have a look at the transformations used.
First, notice that the original problem of comparing two ROC curves is transformed
into the problem of comparing behavior of the involved diagnostic methods on G0

and G1. Indeed, in order to have identical ROC curves it is not necessary that
considered diagnostic methods behave exactly in the same manner, but that their
behavior globally agrees both on the “positive” and the “negative” parts of the
population. Globally it means that both methods correctly recognize the same pro-
portion of G0 and G1 individuals, even though not necessarily the same individuals.
Moreover, note that the transformations are not only technical tools but provide an
interesting diagnostic approach as well. They have been studied extensively, e. g.,
by Doksum [7] and Doksum and Sievers [8], who proposed confidence regions and
statistical inference about their shape.

To get insight into this concept, the upper row of plots in Figure 2 display
empirical estimators

(6) τ̂0(t) = Ĝ−1
0

(
F̂0(t)

)
and τ̂1(t) = Ĝ−1

1

(
F̂1(t)

)
, ∀ t ∈ IY ,

of the transformation functions used for the three ROC pairs presented in Figu-
re 1. The empirical CDF’s F̂k(t) and Ĝk(t), k = 0, 1, are based on the samples
Y01, . . . , Y0nY

0
, Y11, . . . , Y1nY

1
, Z01, . . . , Z0nZ

0
, and Z11, . . . , Z1nZ

1
, with a total sample

size n = n0 + n1 = nY0 + nZ0 + nY1 + nZ1 . The quantile functions used are defined as

Ĝ−1
k (u) = inf

{
t : Ĝk(t) > u

}
, k = 0, 1.

We clearly see almost identical transformations in the central plot as expected
in the case of equivalent ROC curves, while τ̂0(t) and τ̂1(t) have rather different



16 J. Antoch et al.

forms in the other two cases. Another point of view is presented in lower plots of
Figure 2. The transformation functions are plotted one against the other. Under the
null hypothesis the obtained cloud of points should lie along the straight line with
the unit-slope. In the central plot we see that a majority of points, with respect
to supports of transformations, touches the line indicating ROC equivalence, while
the points on the other plots are considerably far away from the expected null
hypothesis line.
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Fig. 2. Transformation functions corresponding to the ROC curves plotted
in Figure 1. The upper plots presents the form of τ̂0(t) (solid lines) and
τ̂1(t) (dashed lines) depending on the threshold t, while the lower plots show
transformation τ̂0(t) plotted against τ̂1(t).

2.2. Test statistic

As illustrated by the graphs in Figure 2, transformation functions τ0(t) and τ1(t)
indicate (non)equivalence of two ROC curves. Therefore, we suggest basing a de-
cision on the distance between them. Precisely, we suggest a test statistic of the
form

(7) Tn = n

∫
I∗
Y

(
τ̂0(t)− τ̂1(t)

)2
dt,

where the integral is on a closed interval I∗
Y ⊆ IY such that the densities g0(s) and

g1(s) are positive and finite for all s in the images of τ0(t) and τ1(t), t ∈ I∗
Y , i. e.

(C3) 0 < g0
(
τ0(t)

)
<∞ and 0 < g1

(
τ1(t)

)
<∞ ∀ t ∈ I∗

Y .

There is a lack of symmetry as concerns cdf’s F (x) and G(x) in the definition
of Tn inherited from the genesis of ROC curves. Our numerical calculations both
with real and simulated data show, however, that its influence on the p values is
quite negligible, especially when the size of the data is large.

As expected, test statistic Tn should be small under the null hypothesis and in-
crease with growing difference between τ0(t) and τ1(t) under the alternative. Hence,
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if an appropriate critical value c(α) is available, the decision rule rejects the null hy-
pothesis whenever Tn > c(α). Theorem 2.1 stated below establishes the asymptotic
distribution of Tn under the null hypothesis (H).

Theorem 2.1. Assume the setting described in Subsection 2.1 and the test statistic
Tn defined by (7). Let conditions (C1) – (C3) hold and Y0, Y1, Z0 and Z1 be mutually
independent. Let n0 and n1 tend to infinity such that nY0 /n0 → κ0, n

Y
1 /n1 → κ1,

κ0, κ1 ∈ (0, 1), and n tends to infinity such that n/n0 → κ0 and n/n1 → κ1,
where 1/κ0, 1/κ1 ∈ (0, 1). Then, under the null hypothesis (H), the test statistic Tn
converges for n→ ∞ in distribution to the infinite weighted sum of independent χ2

1

variables η21 , η
2
2 , . . ., i. e.

(8) Tn
D−→ TB =

∞∑
j=1

λjη
2
j ,

where {λj} represent the eigenvalues of the covariance operator of the zero-mean
Gaussian process B(t) with the covariance structure

(9) cov
(
B(s), B(t)

)
= c0

F0(s)
(
1− F0(t)

)
g0
(
τ0(s)

)
g0
(
τ0(t)

) + c1
F1(s)

(
1− F1(t)

)
g1
(
τ1(s)

)
g1
(
τ1(t)

) ,
s ≤ t ∈ I∗

Y , c0 = κ0/
(
κ0(1− κ0)

)
, c1 = κ1/

(
κ1(1− κ1)

)
.

Proof. Postponed to Appendix A.

Asymptotic distribution of Tn is stated in Theorem 2.1 for independent realiza-
tions of independent diagnostic variables Y and Z. However, this condition is not
always realistic in practice.

We think that the above test procedure behaves well for weakly dependent vari-
ables. However, when strong dependence is suspected, we suggest to use following
two-step approach. The first step consists of determining separately critical val-
ues based on the limit processes of F̂k(t) and Ĝ−1

k (t), k = 0, 1 (see appendix A).
A critical value for Tn can then be obtained by using a Bonferroni inequality as
derived in Horváth et al. [14]. Of course, the accuracy of this procedure, and more
generally the problem of dependence between diagnostic variables, should warrant
a deep study of its own.

Taking into account the genesis of the test statistics, which is data dependent,
its power against any alternative is of natural interest. Thus, the following theorem
assures the consistency of the suggested test statistic.

Theorem 2.2. Assume the setting and assumptions of Theorem 2.1 and the test
statistic Tn defined by (7). Then this test is consistent against any alternative for
which the conditions of Theorem 2.1 are satisfied.

Proof. Postponed to Appendix A.

2.3. Critical values

We have seen that the distribution of the test statistic can be approximated by
the distribution of an infinite weighted sum of χ2

1 variables TB =
∑∞

j=1 λjη
2
j . As

a practical matter, several problems have to be solved. First, we need to estimate
unknown eigenvalues {λj}. Second, even if the eigenvalues were known, we would



18 J. Antoch et al.

need to set an appropriate cut-off point and consider only a finite approximation
of (8). Finally, even the finite approximation of TB may still be quite complex and
great attention has to be paid to obtain reliable critical values.

We start with estimating the eigenvalues of the covariance operator, say Γ, of
the limit process B(t). The covariance operator is a kernel operator whose kernel
is formed by the covariance structure (9) of the underlying process, i. e.,

(10) Γξ(t) =

∫
I∗
Y

cov
(
B(s), B(t)

)
ξ(s) ds, ξ ∈ L2(I∗

Y ).

Therefore, estimators of the eigenvalues of Γ can be based on the estimated
cov

(
B(s), B(t)

)
. For that purpose, we suggest using a plug-in estimator

ĉov
(
B(s), B(t)

)
= c0

F̂0(s)
(
1− F̂0(t)

)
g̃0
(
τ̂0(s)

)
g̃0
(
τ̂0(t)

) + c1
F̂1(s)

(
1− F̂1(t)

)
g̃1
(
τ̂1(s)

)
g̃1
(
τ̂1(t)

) ,
where s, t ∈ {t1, . . . , tp} ⊂ I∗

Y and F̂k(t), k = 0, 1, are the empirical CDFs, τ̂k(t) are
given by (6), and g̃k(t) stands for the kernel estimators of the densities gk(t). For de-
tails see, e. g., Silverman [26]. The covariance operator Γ then can be approximated
by its discrete estimated version

(11) Γ̂n,p =
(
ωi ĉov

(
B(ti), B(tj)

))p

i,j=1
,

where ωi stands for the weights used for the numerical quadrature replacing theoret-
ical integration in (10) by discrete summation over {t1, . . . , tp}. Another possibility
is to use ωi = ti − ti−1. Spectral decomposition of the matrix Γ̂n,p then provides

consistent estimators
{
λ̂j

}
of the asymptotic eigenvalues

{
λj

}
.

Values of ci’s are in practice established by the data, as seen in Theorem 2.1.
The real problem can arise when the proportion of G0 elements – and therefore also
of G1 elements – is extreme, i. e., very close to zero or n. Regarding the value of p,
it follows from our calculations that it is preferable to keep the grid of values ti as
dense as possible, of course, to be able to estimate Γξ(t). We used p = 103 for our
calculations.

Theorem 2.3. Assume that kernel density estimators g̃k(t) are based on con-
tinuous, bounded, compactly supported kernels and on bandwidths {hk} such that,
hk → 0 and hkn

Z
k / log(n

Z
k ) → ∞ for nZk → ∞, k = 0, 1. Then, under the conditions

of Theorem 2.1, it holds∣∣∣λ̂j − λj

∣∣∣ P−→ 0 as n→ ∞, j = 1, 2, . . .

Proof. Postponed to Appendix A.

Suppose that the described estimation procedure results in J positive eigenval-
ues that allow approximation of the infinite representation of TB by its first J
components, i. e.,

(12) TB ≈
J∑

j=1

λ̂jη
2
j ≡ SJ ,

where η21 , . . . , η
2
J stand for independent χ2 variables with one degree of freedom. In

our calculations we set J in such a way that we have used all eigenvalues larger
than 10−10.
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As distribution of SJ is not explicitly known, we can perform Monte Carlo simu-
lation to obtain the desired critical value. The simulation scheme is straightforward:

1. FOR k = 1 : K
2. Simulate J independent χ2

1 variables η21 , . . . , η
2
J

3. Calculate the value of SJ and store it to SJ
k

4. ENDFOR

Once the sample SJ
1 , . . . , S

J
K is available, we form standard empirical distribution

and quantile functions and use estimated quantiles instead of the unknown exact
ones. If extreme quantiles are required, more sophisticated rare event methods based
on properly tuned importance sampling or saddle point approximation should be
used to obtain reliable results.

Concerning computational costs, performing sufficiently many (K ≈ 106) simu-
lations for J ≈ 1000 components is feasible on a standard “home” computer in a
couple of seconds. We point out that taking squares of standard normal variables
is considerably faster, mainly for a large J value, than a direct simulation of χ2

variables, especially if a matrix language such as Matlab, e. g., is available. Notice
that far fewer simulations are required to get critical values for the test statistic (8)
at standards α-levels. Typically K = 104 is enough. However, in our context one
needs reasonably exact p-values for small values of p, making it necessary to run a
large number of simulations in order to obtain a reliable estimator of the tail of the
distribution.

Kac and Siegert [16] have shown that the characteristic function of TB takes the
form

ψTB (ς) = E exp{iςTB} =

∞∏
j=1

(1− iςλj)
−1/2, ς ∈ R,

so that the inverse formula by Gil-Pelaez [10] provides the distribution function of
TB, i. e.,

P(TB ≤ s) = HTB (s) =
1

2
− 1

π

∫ ∞

0

�
(
e−iςsψTB (ς)

ς

)
dς, s ≥ 0,(13)

where �(z) stands for the complex part of a complex number z ∈ C.

If TB is approximated by SJ , Imhof [15] suggested to represent its distribution
function by

(14) P(SJ< s) =
1

2
− 1

π

∫ ∞

0

sin θ(s, u)

uρ(u)
du,

where 2θ(s, u) =
∑J

j=1 arctan
(
λ̂ju

)− su, ρ(u) =
∏J

j=1

(
1 + λ̂2u2)1/4. In practice,

the integration in (14) has to be carried over a finite range 0 ≤ u ≤ U . Imhof
[15] claims that the truncation error is satisfactorily small and provides its upper

bound
(
JUJ

)−1 ∏J
j=1 λ̂

−1/2
j . However, our numerical experiments show that the

integration of (14) must be performed extremely carefully with either a very fine
step of the order 10−6 or rather tricky weighting. We point out that a naive use of
numerical quadrature often leads to the values of distribution function greater than
one, which is, of course, an unacceptable property. As one does not obtain an ade-
quate precision gain with respect to the computational costs of Imhof’s procedure,
simulations turn out to be the most favorable in practice.



20 J. Antoch et al.

2.4. Kernel estimator

The methodology described above is based on the use of the empirical estimators of
distribution and quantile functions Fk(t), G

−1
k (p), k = 0, 1. Evidently, to estimate

cdf’s Fk(t), k = 0, 1, one might use the kernel estimators instead, i. e.,

F̃k(t) =
1

nYk

nY
k∑

i=1

H

(
t− Yki
hk

)
, t ∈ R, k = 0, 1,(15)

where H(·) is an appropriate cumulative kernel function and the bandwidth pa-
rameters h0 and h1 control the smoothness of estimators. Analogously, kernel
estimators G̃−1

k (p) might be used to estimate quantile functions G−1
k (p), where

G̃−1
k (p) = inf

{
t : G̃k(t) > p

}
, p ∈ (0, 1), k = 0, 1.

Combining these two kernel estimators and following ideas of Section 2.1 we
naturally come to the kernel analogue of the empirical transformation functions (6),
i. e., to

(16) τ̃k(t) = G̃−1
k

(
F̃k(t)

)
, t ∈ IY , k = 0, 1.

Consequently, in the definition (7) one can replace the empirical transformations
τ̂k(t) with the kernel ones τ̃k(t) and obtain the kernel analogue of the test statis-
tic Tn. As one might expect, both Theorem 2.1 and Theorem 2.3 hold for the kernel
type test statistic as well (see Appendix A for a formal proof). Hence, in the prac-
tice of performing the test procedure, one may follow the same “lines” both for the
empirical and the kernel estimators.

It is well known that the kernel estimators offer some advantages compared to
their empirical analogues. The most important is probably the fact that kernel
smoothing typically brings a better “visual” effect as it provides a continuous curve
in the ROC square instead of discrete points of an empirical ROC curve. On the
other hand, if smoothing parameters are not properly chosen, the kernel type test
statistic may lead to irrelevant and unreliable results.

The kernel CDF estimator has been proposed and studied for the first time by
Nadaraya [20]. Concerning the kernel ROC curves, one finds the proposals in, e. g.,
Zhou et al. [33] or Lloyd [19]. The last paper has been followed-up by an interesting
paper of Hall et al. [12]. Later, Prchal [24] suggested an automatic procedure that,
by means of data transformation, improves accuracy of kernel ROC curves.

Appendix A: Proofs

Theorem 2.1 is stated for the test statistic Tn defined by (7), which is based on
the empirical estimators of the distribution and quantile functions. However, we
provide its proof for a more general class of estimators satisfying conditions (P1)
and (P2) listed below.

Let Y1, . . . , Ym and Z1, . . . , Zn be i.i.d. samples with respective continuous distri-
bution functions F (t) and G(t) such that the supports of their densities are real in-
tervals IY and IZ . Let I∗

Y ⊆ IY be a closed interval such that 0 < g
(
G−1

(
F (t)

))
<

∞, ∀ t ∈ I∗
Y . Let F̂ (t) and Ĝ(t) be the estimators of F (t) and G(t), and Ĝ−1(u) =

inf {t : Ĝ(t) > u} be an estimator of the quantile function G−1(u), such that

(P1) sup
t∈I∗

Y

∣∣∣F̂ (t)− F (t)
∣∣∣ a.s.−→ 0,
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(P2)
√
m
(
F̂ (t)−F (t)) D−→W1

(
F (t)

)
&

√
n
(
Ĝ(t)−G(t)) D−→W2

(
G(t)

)
, ∀ t ∈ I∗

Y ,

where W1 and W2 stand for independent Brownian bridges.
The first step of proving Theorem 2.1 concerns a weak convergence result of an

estimated quantile process.

Lemma A.1. Let m and n tend to infinity such that m/(n + m) → κ ∈ (0, 1).
Then, under the conditions (P1) and (P2),

√
m+ n

(
Ĝ−1

(
F̂ (t)

)−G−1
(
F (t)

))
(17)

D−→ 1√
κ(1− κ)

1

g
(
G−1

(
F (t)

))W (
F (t)

)
, t ∈ I∗

Y ,

where
{
W (s), s ∈ [0, 1]

}
denotes a Brownian bridge defined on [0, 1].

Proof. First, notice that
√
m+ n

(
Ĝ−1

(
F̂ (t)

)−G−1
(
F (t)

))
can be decomposed as

√
m+ n

(
Ĝ−1

(
F̂ (t)

)−G−1
(
F̂ (t)

))
(18)

+
G−1

(
F̂ (t)

)−G−1
(
F (t)

)
F̂ (t)− F (t)

√
m+ n

(
F̂ (t)− F (t)

)
, t ∈ I∗

Y .

The second term, using (P1), (P2) and the same arguments as in the proof of
Theorem 4.1 by Doksum [7], converges in distribution to

1√
κ

1

g
(
G−1

(
F (t)

))W1

(
F (t)

)
, ∀ t ∈ I∗

Y .

Further, from (P2) and (3.4) in Ralescu and Puri [25] we can deduce that

(19) sup
u=F (t), t∈I∗

Y

∣∣∣√m+ n
(
Ĝ−1(u)−G−1(u)

)
− U(u)

∣∣∣ P−→ 0,

where U(u) ≡
(√

1− κg
(
G−1(u)

))−1

V (u) and V stands for a Brownian bridge

independent of W1. Note that when Ĝ(.) is the empirical function, (19) can be
deduced from results stated by Kiefer (1970, 1972), see Theorems 4.3.2 and 5.2.1
in Csörg¨ and Révész [5]. Together with (P1) and continuity arguments we obtain

sup
t∈I∗

Y

∣∣∣√m+ n
(
Ĝ−1

(
F̂ (t)

)−G−1
(
F̂ (t)

))− U
(
F̂ (t)

)
+ U

(
F̂ (t)

)− U
(
F (t)

)∣∣∣
≤ sup

0≤u≤1

∣∣∣√m+ n
(
Ĝ−1(u)−G−1(u)

)
− U(u)

∣∣∣+ sup
t∈I∗

Y

∣∣∣U(
F̂ (t)

)− U
(
F (t)

)∣∣∣,
that converges to 0 in probability.

Proof of Theorem 2.1

Proof. If F̂ (t) stands for the empirical CDF estimator, the property (P1) is satisfied
due to the well-known Glivenko–Cantelli theorem, whereas the proof of (P2) can
be found, e. g., in Billingsley [4]. Hence, Lemma A.1 holds for this case and with
continuity of L2 norm with respect to the Skorochod topology it assures

(20) Tn
D−→

∫
I∗
Y

B2(t) dt,
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where
{
B(t), t ∈ I∗

Y

}
is a zero-mean Gaussian process with the covariance struc-

ture given by (9). As E B2(t) < ∞ ∀ t ∈ I∗
Y , B(t) admits the Karhunen-Loève

decomposition

B(t) =

∞∑
j=1

√
λjηjvj(t),

where ηj are real random variables following the standard normal distribution and
{vj} is the orthonormal system of the eigenfunctions corresponding to the eigen-
values {λj} of the covariance operator Γ of

{
B(t), t ∈ I∗

Y

}
. It follows from Kac and

Siegert [16] that

(21)

∫
I∗
Y

B2(t) dt =

∫
I∗
Y

⎛
⎝ ∞∑

j=1

√
λjηjvj(t)

⎞
⎠

2

dt =
∞∑
j=1

λjη
2
j ,

which assures the statement of Theorem 2.1.

Proof of Theorem 2.2

Proof. We have shown above that, under the assumptions of Theorem 2.1, Lemma A.1
holds. Thus

(22) n

∫
I∗
Y

(
τ̂0(t)− τ0(t)− τ̂1(t) + τ1(t)

)2
dt

D−→
∫
I∗
Y

B2(t) dt,

where
{
B(t), t ∈ I∗

Y

}
is a zero-mean Gaussian process with the covariance structure

given by (9). Under an alternative hypothesis and a given critical value tα, the
probability of rejecting the null hypothesis is P

(
Tn > tα

)
. Using (22) we have

lim
n→∞P

(
Tn > tα

) −→ 1,

what proves consistency of the test.

Remark. As pointed out in Section 2.4, Theorem 2.1 remains valid when the
kernel CDF estimators are used. Indeed, property (P1) is due to Nadaraya [20],
while Nixdorf [21] has shown (P2).

Proof of Theorem 2.3

Proof. According to the Glivenko–Cantelli theorem one has for k = 0, 1

sup
s,t∈I∗

Y

∣∣∣F̂k(s)
(
1− F̂k(t)

)− Fk(s)
(
1− Fk(t)

)∣∣∣(23)

= sup
s,t∈I∗

Y

∣∣∣(1− F̂k(t)
)(
F̂k(s)− Fk(s)

)
+ Fk(s)

(
Fk(t)− F̂k(t)

)∣∣∣ a.s.−→ 0.

Further, Bertrand-Retali [3] has shown that

(24) sup
t∈I∗

Y

∣∣∣g̃k(t)− gk(t)
∣∣∣ a.s.−→ 0.

For validity of

(25) sup
ε<u<1−ε

∣∣∣Ĝ−1
k (u)−G−1

k (u)
∣∣∣ a.s.−→ 0
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see Van der Vaart and Wellner [28] and the references therein. Combining (23), (24)
and (25) leads to

(26) sup
s,t∈I∗

Y

∣∣∣ĉov(B(s), B(t)
)− cov

(
B(s), B(t)

)∣∣∣ a.s.−→ 0.

The statement of Theorem 2.3 now follows from (26) and result (15) in Yao et al.
[31].
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