Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 10, 1997, 387–397

SOLUTIONS OF SUPERLINEAR AT ZERO ELLIPTIC EQUATIONS VIA MORSE THEORY

VITALY MOROZ

Dedicated to the memory of Professor Mark Aleksandrovich Krasnosel'skii

In this note we study the existence of nontrivial solutions of the Dirichlet problem

(1)
$$\begin{cases} -\Delta u = f(u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where $\Omega \subset \mathbb{R}^N$ is an open bounded domain with smooth boundary. We assume that $f \in C(\mathbb{R}, \mathbb{R})$ satisfies f(0) = 0, so the constant function $u \equiv 0$ is a trivial solution of (1). We are interested in the existence of nontrivial solutions when fis superlinear at zero, that is near zero it looks like $O(u|u|^{\nu-2})$ for some $\nu \in (1,2)$. More precisely, we assume that f and its primitive

$$F(u) = \int_0^u f(\xi) \, d\xi,$$

satisfy the following conditions:

(f₁) for some $\nu \in (1, 2)$ there are constants $r, a_r > 0$ such that

$$F(u) \ge a_r |u|^{\nu}$$
 for $|u| \le r$,

(f₂) F(u) - uf(u)/2 > 0 for all $u \neq 0$.

Key words and phrases. Semilinear elliptic equation, superlinear at zero nonlinearity, multiple solutions, Morse theory.

Supported by the Belorussian Fund of Fundamental Investigations.

©1997 Juliusz Schauder Center for Nonlinear Studies

387

¹⁹⁹¹ Mathematics Subject Classification. 35J20, 35J60, 58E05.