Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 1, 1993, 303-313

SOLUTION SETS OF BOUNDARY VALUE PROBLEMS FOR NONCONVEX DIFFERENTIAL INCLUSIONS

Francesco S. De Blasi – Giulio Pianigiani

(Submitted by L. Górniewicz)

Dedicated to the memory of Karol Borsuk

1. Introduction and preliminaries

Topological properties of the solution set of Cauchy problems for differential inclusions have been investigated by several authors [16], [24], [14], [23], [10], [19], [3], [15]. Less attention has been, so far, devoted to analogous questions for boundary value problems.

In the present paper we consider boundary value problems of the type

(BV)
$$\begin{cases} x''(t) \in F(t, x(t), x'(t)), \\ x(0) = x(1) = 0, \end{cases}$$

where F is a multifunction from $I \times \mathbf{R}^q \times \mathbf{R}^q$, I = [0, 1], to the non-empty compact subsets of \mathbf{R}^q . If F is Lipschitzean, we prove that the solution set S_F of (BV) is a retract of the Sobolev space $W^{2,1}(I, \mathbf{R}^q)$. In particular, S_F is contractible and hence arcwise connected. Whenever F is convex valued and Lipschitzean, S_F is a retract also of $C^1(I, \mathbf{R}^q)$. Finally, in the nonconvex case, under a continuity assumption on F, it is proved that S_F is non-empty.

To establish the retraction property of S_F , when F is Lipschitzean, we use some recent results due to Ricceri [21] and Bressan, Cellina and Fryszkowski [4],

©1993 Juliusz Schauder Center for Nonlinear Studies