Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 1, 1993, 183-201

NONLINEAR EIGENVALUES AND MOUNTAIN PASS METHODS

M. SCHECHTER - K. TINTAREV¹

(Submitted by Ky Fan)

Dedicated to the memory of Karol Borsuk

1. Introduction

Mountain pass methods have proved very helpful in many applications. In the original formulation, Ambrosetti-Rabinowitz [1] considered a C^1 functional G(u) defined on the whole of a Banach space B. It was assumed that there were elements $e_0, e_1 \in B$ such that

$$\max G(e_i) < c := \inf_{\varphi \in \Phi} \max_{0 \le s \le 1} G(\varphi(s))$$

where Φ is the set of all continuous maps φ of [0,1] into B such that $\varphi(i) = e_i$, i = 0, 1. It was desired to find a point $u \in B$ such that

(1.2)
$$G'(u) = 0, u \neq e_i, i = 0, 1.$$

¹⁹⁹¹ Mathematics Subject Classification. Primary 47H15, 58E05, 49B27.

¹Research supported in part by an NSF grant.