ON THE OBLIQUE DERIVATIVE PROBLEM IN AN INFINITE ANGLE

M. G. Garroni - V. A. Solonnikov - M. A. Vivaldi

Dedicated to Louis Nirenberg on the occasion of his 70th birthday

1. Introduction

Let $d_{\vartheta} \subset \mathbb{R}^{2}$ be the infinite angle of opening $\vartheta \in(0,2 \pi]$ with sides γ_{0} and γ_{1} given by

$$
\begin{aligned}
& \gamma_{0}=\left\{0 \leq x_{1}<\infty, x_{2}=0\right\} \\
& \gamma_{1}=\left\{x_{1}=r \cos \vartheta, x_{2}=r \sin \vartheta, 0 \leq r=\sqrt{x_{1}^{2}+x_{2}^{2}}<\infty\right\}
\end{aligned}
$$

in a Cartesian coordinate system $\left\{x_{1}, x_{2}\right\}$. We consider the elliptic boundary value problem

$$
\begin{align*}
& -\Delta u+s u=f(x), \quad x \in d_{\vartheta} \\
& \left.\left(\frac{\partial u}{\partial n}+h_{i} \frac{\partial u}{\partial r}\right)\right|_{\gamma_{i}}=\varphi_{i}(r), \quad i=0,1 \tag{1.1}
\end{align*}
$$

where n is the exterior normal to γ_{i}, h_{0} and h_{1} are given real constants, and s is a complex parameter with $\Re s \equiv a^{2} \geq 0$.

Problem (1.1) arises from the parabolic initial-boundary value problem

$$
\begin{align*}
& v_{t}-\Delta v=f(x, t), \quad x \in d_{\vartheta}, t>0 \\
& v(x, 0)=0,\left.\quad\left(\frac{\partial v}{\partial n}+h_{i} \frac{\partial v}{\partial r}\right)\right|_{\gamma_{i}}=\varphi_{i}(r, t), \quad i=0,1, \tag{1.2}
\end{align*}
$$

[^0]
[^0]: 1991 Mathematics Subject Classification. Primary 35J25.

