THE INTRINSIC MOUNTAIN PASS PRINCIPLE

Nadezhda Ribarska — Tsvetomir Tsachev — Mikhail Krastanov

1. Introduction

Recently M. Schechter proposed new ideas in the variational methods usually known under the name "mountain pass". In [9] he proved a quantitative result of mountain pass type giving up the basic geometrical essence of the classical theorem. Let us fix the abstract mountain pass structure (cf. [4]). We are given a functional $f: X \to R$ defined on a complete metric space X, a barrier $B \subset X$, a boundary $A \subset X$ and a family of paths $\Gamma \subset 2^X$ satisfying:

- (a) $\gamma \supset A$ for every $\gamma \in \Gamma$,
- (b) $\gamma \cap B \neq \emptyset$ for every $\gamma \in \Gamma$,
- (c) for any $\gamma \in \Gamma$, $t \geq 0$ and any

$$\eta \in \Xi := \{ \theta \in C(X \times [0,1], X) : \eta(x,t) = x \text{ for all } (x,t) \in (X \times \{0\}) \cup (A \times [0,1]) \}$$

we have $\eta(\gamma,t) \in \Gamma$, i.e. Γ is stable with respect to Ξ .

Remark 1.1. In case needed one can assume that the family of paths Γ is stable with respect to a proper subset of the class of deformations Ξ .

In the classical mountain pass setting the functional f is C^1 and is "high" on the barrier and "low" on the boundary. In [9] this is violated – the barrier is split into two parts: a "high" part where the functional values are greater

 $^{1991\} Mathematics\ Subject\ Classification.\ 58E05,\ 58E30.$

Key words and phrases. Nonsmooth critical point theory, mountain pass, deformations. This work is partially supported by Bulgarian Science Foundation - contracts MM-506/95, MM-521/95, MM-612/96 and MM-807/98.