Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 12, 1998, 227–243

TYPE II REGIONS BETWEEN CURVES OF THE FUČIK SPECTRUM AND CRITICAL GROUPS

Kanishka Perera — Martin Schechter

1. Introduction

The Fučík spectrum arises in the study of semilinear elliptic boundary value problems of the form

(1.1)
$$\begin{cases} -\Delta u = f(x, u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

where Ω is a smooth bounded domain in \mathbb{R}^n and f(x,t) is a Carathéodory function on $\overline{\Omega} \times \mathbb{R}$ such that

(1.2)
$$\frac{f(x,t)}{t} \to \begin{cases} a & \text{a.e. as } t \to -\infty, \\ b & \text{a.e. as } t \to \infty. \end{cases}$$

When |u(x)| is large, (1.1) approximates the equation

$$(1.3) \qquad -\Delta u = bu^+ - au^-,$$

where $u^{\pm}(x) = \max\{\pm u(x), 0\}$. The set Σ of those points $(a, b) \in \mathbb{R}^2$ for which (1.3) (together with the zero boundary condition) has nontrivial solutions is called the Fučík spectrum of $-\Delta$.

It was shown in Schechter [7] that, if $0 < \lambda_1 < \lambda_2 < \ldots$ are the distinct Dirichlet eigenvalues of $-\Delta$, there are decreasing curves C_{l1} , C_{l2} (which may

O1998Juliusz Schauder Center for Nonlinear Studies

227

¹⁹⁹¹ Mathematics Subject Classification. Primary 35J65, 58E05, 49B27.

 $Key\ words\ and\ phrases.$ Semilinear elliptic PDE, jumping nonlinearities, Fučík spectrum, variational methods, Morse theory, critical groups, homological local linking.