ON PARABOLIC QUASI-VARIATIONAL INEQUALITIES AND STATE-DEPENDENT SWEEPING PROCESSES

M. Kunze — M. D. P. Monteiro Marques

1. Introduction

In this paper we consider the evolution problems

(1.1)
$$-u'(t) \in N_{C(t,u(t))}(u(t)) \quad \text{a.e. in } [0,T], \ u(0) = u_0 \in C(0,u_0),$$

in a Hilbert space H. We assume that

(1.2) $C(t, u) \subset H$ is nonempty, closed, and convex for $t \in [0, T], u \in H$.

In (1.1), $N_{C(t,u)}(x)$ denotes the normal cone to C(t,u) at $x \in C(t,u)$, cf. Section 2 below. We will treat the case of $(t,u) \mapsto C(t,u)$ being Lipschitz continuous w.r. to the Hausdorff distance d_H with constants $L_1, L_2 \geq 0$, i.e., we require

$$(1.3) d_H(C(t,u),C(s,v)) \le L_1|t-s| + L_2|u-v|, t,s \in [0,T], u,v \in H.$$

Note that a solution of (1.1) in particular has to satisfy $u(t) \in C(t, u(t))$ for $t \in [0, T]$.

 $^{1991\} Mathematics\ Subject\ Classification.\ 34A60,\ 35K22,\ 49J40.$

Key words and phrases. variational inequality, sweeping process, evolution problem.

We are grateful to project PRAXIS/2/2.1/MAT/125/94 and the Volkswagen–Stiftung (RiP-program at Oberwolfach) for their support, as well as to F.C.T., PRAXIS XXI and FEDER, in what concerns the second author.