ON A THEOREM OF TVERBERG

Zdzisław Dzedzej — Marek Izydorek — Antonio Vidal

1. Introduction

Let Δ^n denote the *n*-dimensional simplex. Any face of Δ^n is assumed to be closed. The well-known theorem of Radon (see [6]) can be formulated as follows

THEOREM (Radon). For any linear map $f: \Delta^{n+1} \to \mathbb{R}^n$ there exist two disjoint faces σ_1 , σ_2 of Δ^{n+1} such that $f(\sigma_1) \cap f(\sigma_2) \neq \emptyset$.

In 1966 the Radon theorem was generalized by Tverberg in the following way (see [20]):

THEOREM (Tverberg). For any linear map $f: \Delta^N \to \mathbb{R}^n$, where N = (p-1)(n+1), there exist p pairwise disjoint faces $\sigma_1, \ldots, \sigma_p \subset \Delta^N$ such that

$$\bigcap_{i=1}^{p} f(\sigma_i) \neq \emptyset.$$

There is a natural question whether the linearity condition for f can be replaced by continuity. The first positive answer was given by Bajmóczy and Bárány in [1] for p=2. Next Bárány, Shlosman and Szücs in [3] proved the theorem for p being a prime number. In 1992 Volovikov obtained the positive answer for any number which is a prime power (see [21]). In all papers mentioned above various generalizations of the classical Borsuk–Ulam antipodal theorem

 $^{1991\} Mathematics\ Subject\ Classification.\ 47H04,\ 52A20,\ 55M20,\ 05C35.$

Key words and phrases. Admissible map, Borsuk–Ulam theorem \mathbb{Z}_p -action.

The research on this paper was supported by the KBN Grant No. 2 P03A 017 11.