Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 12, 1998, 153–158

CONLEY INDEX AND PERMANENCE IN DYNAMICAL SYSTEMS

Klaudiusz Wójcik

(Submitted by A. Granas)

1. Introduction

The motivation for our problem comes from permanence theory, which plays an important role in mathematical ecology. Roughly speaking, a flow f on $\mathbb{R}^n \times [0, \infty)$ is said to be permanent (or uniformly persistent) whenever $\mathbb{R}^n \times \{0\}$ is a repeller (see [7]). Other closely related terminology includes cooperativity, persistence and ecological stability. For a discussion of how these terms are related, see [1], [9]. The criterion of permanence for biological systems is a condition ensuring the long-term survival of all species. Sufficient conditions for permanence have been given for a wide variety of models. For more details and extensive bibliographies concerning the problem, we refer the reader to [2], [8].

In this paper we show that if $S \subset \mathbb{R}^n \times \{0\}$ is an isolated invariant set with nonzero homological Conley index, then there exists an x in $\mathbb{R}^n \times (0, \infty)$ such that $\omega(x)$ is contained in S. This may be understood as a strong violation of permanence.

We first give a brief account of the Conley index theory.

©1998 Juliusz Schauder Center for Nonlinear Studies

153

¹⁹⁹¹ Mathematics Subject Classification. Primary 58G10; Secondary 54H20. Key words and phrases. Dynamical systems, topological invariants. Research supported by the KBN grant 2 P03A 040 10.