Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 12, 1998, 137–152

GLOBAL BIFURCATION OF OSCILLATORY PERIODIC SOLUTIONS OF DELAY DIFFERENTIAL EQUATIONS

PANAGIOTIS PARASKEVOPOULOS

(Submitted by prof. W. Marzantowicz)

1. Introduction

In this work we prove a global bifurcation result for periodic solutions of a general class of delay differential equations (allowing for state dependent delays). More precisely, assume that M > 0 is any real number and we are given a continuous function $f : C([-M, 0]; \mathbb{R}) \to \mathbb{R}$. Consider the singularly perturbed equation

$$\varepsilon \cdot x'(t) = f(x_t), \quad t > 0,$$

or equivalently (with $\lambda = 1/\varepsilon$)

$$(\mathcal{E}_{\lambda}) \qquad \qquad x'(t) = \lambda \cdot f(x_t), \quad t > 0,$$

where $\lambda > 0$ is a parameter. We will be interested in large values of this parameter. Note that, for every function $y : \mathbb{R} \to \mathbb{R}$ the "translates" $y_t : [-M, 0] \to \mathbb{R}$ are defined by $y_t(\theta) \doteq y(t + \theta)$, where $-M \leq \theta \leq 0$. Equation (\mathcal{E}_{λ}) includes equations with constant delays (e.g. $f(\phi) = g(\phi(-M)), \phi \in C([-M, 0]; \mathbb{R})$, for some $g : \mathbb{R} \to \mathbb{R}$) or state dependent delays (e.g. $f(\phi) = g(\phi(-r(\phi(0))))$, for some $r : \mathbb{R} \to [0, \infty)$).

137

¹⁹⁹¹ Mathematics Subject Classification. 34K14, 34C23.

Key words and phrases. Delay differential equations, global bifurcation.

 $[\]textcircled{O}1998$ Juliusz Schauder Center for Nonlinear Studies