POSITIVE SOLUTIONS OF QUASILINEAR ELLIPTIC EQUATIONS

YISHENG HUANG

1. Introduction

In this paper we are concerned with the existence of positive solutions for a class of quasilinear elliptic equations of the form

(1.1)
$$\begin{cases} -\Delta_p u = \lambda a(x) |u|^{p-2} u + f(x, u, \lambda), \\ u \in \mathcal{D}_0^{1,p}(\Omega), \end{cases}$$

where Ω is an unbounded domain in \mathbb{R}^N with smooth boundary $\partial\Omega$, $\Delta_p u := \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ (p>1) is the p-Laplacian, $\mathcal{D}_0^{1,p}(\Omega)$ is the completion of $C_0^{\infty}(\Omega)$ in the norm $||u|| = \{\int_{\Omega} |\nabla u|^p\}^{1/p}, \ 0 < a(x) \in L^{\infty}(\Omega) \cap L^1(\Omega), \ \lambda \geq 0$ is a real parameter and f satisfies some conditions to be given later.

It is not difficult to show that the eigenvalue problem

(1.2)
$$\begin{cases} -\Delta_p u = \lambda a(x) |u|^{p-2} u, \\ u \in \mathcal{D}_0^{1,p}(\Omega), \end{cases}$$

has the least eigenvalue $\lambda_1 > 0$ with a positive eigenfunction e_1 and λ_1 is the only eigenvalue having this property (cf. Proposition 3.1). This gives us a possibility to study the existence of an unbounded branch of positive solutions bifurcating from $(\lambda_1, 0)$. When Ω is bounded, the result is well-known, we refer to the survey article of Amann [2] and the paper of Ambrosetti and Hess [4] for the case p = 2,

 $Key\ words\ and\ phrases.$ Positive solutions, p-Laplacian, fixed point index.

¹⁹⁹¹ Mathematics Subject Classification. 35G30, 35J70.