Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 12, 1998, 47–59

SYMMETRY OF POSITIVE SOLUTIONS OF SOME NONLINEAR EQUATIONS

M. GROSSI — S. KESAVAN — F. PACELLA — M. RAMASWAMY

1. Introduction

In recent years, a lot of interest has been shown in the study of symmetry properties of solutions of nonlinear elliptic equations, reflecting the symmetry of the domain. In a famous paper, Gidas, Ni and Nirenberg [4] showed that if Ω is smooth, convex and symmetric in one direction, say, that of x_1 , then any positive classical solution of the problem

(1.1)
$$\begin{cases} -\Delta u = f(u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where $f : \mathbb{R} \to \mathbb{R}$ is a locally Lipschitz continuous function, must be also symmetric with respect to x_1 . The proof of this result is based on the moving plane method and the maximum principle.

In a recent paper, Berestycki and Nirenberg [2] have substantially simplified the moving plane method obtaining, among other results, the symmetry of the positive solutions of (1.1) without assuming any smoothness on Ω .

When the dimension of the space is two, Lions [9] suggested a method of proving the radial symmetry of positive solutions in a ball when f is positive, without assuming anything on the smoothness of f. While previous results were proved using variants of the moving plane method, this result can be proved using

47

¹⁹⁹¹ Mathematics Subject Classification. 35J40.

Key words and phrases. Elliptic equations, positive solutions.

 $[\]textcircled{O}1998$ Juliusz Schauder Center for Nonlinear Studies