EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR SUPERQUADRATIC NONCOOPERATIVE VARIATIONAL ELLIPTIC SYSTEMS

Daniela Lupo

(Submitted by A. Marino)

1. Introduction and statement of the main results

Let us consider the noncooperative elliptic system

(ES)
$$\begin{cases} -\Delta u = \alpha u - \delta v + F_u(u, v) & \text{in } \Omega, \\ \Delta v = -\delta u - \gamma v + F_v(u, v) & \text{in } \Omega, \\ u = v = 0 & \text{on } \partial \Omega, \end{cases}$$

where Ω is a bounded open domain in \mathbb{R}^N with smooth boundary, $\alpha \geq 0$, $\delta \geq 0$, $\gamma \geq 0$ are three real parameters and $F \in C^1(\mathbb{R}^2, \mathbb{R})$.

The solutions of (ES) represent the steady state solutions of reaction-diffusion systems which are derived from several applications, such as mathematical biology or chemical reactions (see for instance [18] and [22]). The following examples are, for instance, particular cases of (ES).

 $\lambda-\omega$ systems. This kind of system has been widely used as a prototype of reaction-diffusion system

$$\begin{cases} -\Delta u = \lambda(r)u - \omega(r)v & \text{in } \Omega, \\ \Delta v = -\omega(r)u - \lambda(r)v & \text{in } \Omega, \\ u = v = 0 & \text{on } \partial\Omega, \end{cases}$$

 $1991\ Mathematics\ Subject\ Classification.\ 35 J 50.$

Key words and phrases. Elliptic systems, multiplicity of solutions.

 $\textcircled{\text{$\mathbb{C}$}}1998$ Juliusz Schauder Center for Nonlinear Studies