Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 11, 1998, 219–226

ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF 1D-BURGERS EQUATION WITH QUASI-PERIODIC FORCING

YA. G. SINAI

Dedicated to Jürgen Moser

1. Introduction

We study in this paper the asymptotics of solutions of 1D-Burgers equation

(1)
$$\frac{\partial u}{\partial t} + \frac{\partial (u^2)}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2} + \beta F'_{\alpha}(x)$$

as $t \to \infty$ for the case of quasi-periodic forcing, i.e.

$$F_{\alpha}(x) = \sum_{n=(n_1,\dots,n_d)\in\mathbb{Z}^d} f_n \exp\{2ni(n,\alpha+x\omega)\}.$$

Here $\alpha = (\alpha_1, \ldots, \alpha_d) \in \text{Tor}^d$, and $(\alpha + x\omega) \in \text{Tor}^d$ is the orbit of the quasiperiodic flow $\{S^x\}$ on Tor^d , i.e. $S^x \alpha = \alpha + x\omega$, $-\infty < x < \infty$. We shall assume that ω is Diophantine, i.e. $|(\omega, n)| \ge K/|n|^{\gamma}$ for positive constants γ , K, $|n| = \sum_{i=1}^d |n_i| \ne 0$. The coefficients f_n decay so fast that $\sum |f_n| \cdot |n|^r < \infty$ for some r > 1. Then F_{α} , F'_{α} can be considered as values of continuous functions F, dF/dx on Tor^d along the orbit of $\{S^x\}$.

The case d = 1 was considered in [Si1]. It was shown there that any solution u(x,t) for which u(x,0), $\int_0^x u(y,0) \, dy$ are periodic functions of some period R

O1998Juliusz Schauder Center for Nonlinear Studies

219

¹⁹⁹¹ Mathematics Subject Classification. 35A25, 35B10, 35B40.

Key words and phrases. Asymptotic behaviour of solutions, periodic solutions.

I thank NSF and RFFI for financial support (Grant DMS-9706794 and Grant 96-01-0037). I thank W. Schlag for useful remarks.