Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 11, 1998, 159–168

ON THE SOLVABILITY OF A TWO POINT BOUNDARY VALUE PROBLEM AT RESONANCE II

Chung-Wei Ha — Chung-Cheng Kuo

1. Introduction

Let $k \ge 1$ be a fixed integer. We consider the boundary value problem

(1_k)
$$u'' + k^2 u + g(x, u) = h(x)$$
 in $(0, \pi)$, $u(0) = u(\pi) = 0$,

where $g: (0,\pi) \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function, that is, g(x, u) is measurable in $x \in (0,\pi)$ for each $u \in \mathbb{R}$ and continuous in $u \in \mathbb{R}$ for a.e. $x \in (0,\pi)$, $h \in L^1(0,\pi)$ is given. We assume throughout this paper that

(H1) For each r > 0, there exists $a_r \in L^1(0, \pi)$ such that

 $|g(x,u)| \le a_r(x)$ for a.e. $x \in (0,\pi)$ and $|u| \le r$.

(H2) There exists $\Gamma \in L^1(0,\pi)$ such that

$$\|\Gamma\|_{L^1} \le 2k$$

and

(2)

(3)
$$\limsup_{|u| \to \infty} |g(x, u)/u| \le \Gamma(x)$$

uniformly for a.e. $x \in (0, \pi)$.

1991 Mathematics Subject Classification. 34B15, 47H11. Key words and phrases. Landesman–Lazer condition, L^1 bound, nonlinear alternative.

O1998Juliusz Schauder Center for Nonlinear Studies

159