Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 11, 1998, 83–102

MULTIPLICITY OF BIFURCATION POINTS FOR VARIATIONAL INEQUALITIES VIA CONLEY INDEX

CLAUDIO SACCON

1. Introduction

The present work deals with nonlinear eigenvalue problems of the following type:

(1.1)
$$\begin{cases} a(u, v - u) + \langle P'(u), v - u \rangle \ge \lambda b(u, v - u) \quad \forall v \in \mathbb{K}, \\ (u, \lambda) \in \mathbb{K} \times \mathbb{R}, \end{cases}$$

where a, b are bilinear symmetric, P'(0) = P''(0) = 0, and K is a closed convex set containing 0. In particular, we search for the λ 's such that $(0, \lambda)$ accumulates solutions (u_n, λ_n) with $u_n \neq 0$. It is known that such λ 's are eigenvalues of the 0-asymptotic problem, namely there exists $u \neq 0$ such that (u, λ) solves

(1.2)
$$\begin{cases} a(u, v - u) \ge \lambda b(u, v - u) & \forall v \in \mathbb{K}_0, \\ (u, \lambda) \in \mathbb{K}_0 \times \mathbb{R}, \end{cases}$$

where $\mathbb{K}_0 = \overline{\bigcup_{t>0} t\mathbb{K}}$ is a closed convex cone. The typical problem one has to face is twofold: (1) find eigenvalues (which is nontrivial, unless \mathbb{K}_0 is a linear space): (2) ensure that some eigenvalues are bifurcation points (which is not always true, as counterexamples show). Much work has been done in this context; see [11], [15]–[18], [21]–[30], [32]–[34] and the references therein for a more complete picture of the situation.

83

 $^{1991\} Mathematics\ Subject\ Classification.\ 58E35,\ 58F14.$

Key words and phrases. Conley index, bifurcation points.

 $[\]textcircled{O}1998$ Juliusz Schauder Center for Nonlinear Studies