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In This Issue

The following type of example is often presented in
introductory probability and statistics courses to help
sharpen students’ intuition about the importance of
background rates in calculating probabilities: Suppose
that you are walking down the street and notice that
the Department of Public Health is giving a free
medical test for a certain rare disease. The test is 90%
reliable in the following sense: If a person has the
disease, there is a probability of 0.9 that the test will
give a positive response (the “sensitivity” of the test);
and if a person does not have the disease, there is a
probability of 0.9 that the test will give a negative
response (the “specificity” of the test). Data indicate
that your chances of having the disease are only 1 in
5000. However, because the test costs you nothing
(you have already paid for it with your taxes), and it
is fast and harmless, you decide to stop and take the
test. A few days later you learn that you had a positive
response to the test. What is now the probability that
you have the disease?

Many beginning students feel that this probability
should be about 0.9, but that feeling mistakenly ig-
nores the small prior probability of 0.0002 that you
had the disease. The correct posterior probability is
found by Bayes theorem to be 0.0018. Your probability
of having the disease is now 9 times as large as it was
before you took the test, but it is still extremely small.
The intuitive explanation is that because the test has
a 10% rate of producing false positives, there will be
about 500 positive responses among a group of 5000
persons, but on the average only one person in the
group will have the disease.

It is this large number of false positives that has led
various interested parties to question the effectiveness
of large-scale medical screening tests for populations
in which the prevalence of the disease is low, and
which is the subject of the opening article by Joseph
L. Gastwirth in this issue. He considers problems in
which the prevalence, as well as the sensitivity and
the specificity of the test, are unknown, and discusses
effective experimental designs for estimating these
quantities in order to obtain an estimate of the pos-
terior probability given a positive response that will
have small variance. He describes two applications
that have been very much in the news in recent years:
the screening of general populations for the presence
of antibodies to the AIDS virus and the screening of
the employees, or potential employees, of an organi-
zation with polygraph (or “lie detector”) tests.

In his discussion of this article, D. H. Kaye consid-
ers the standards that are used for the admissibility
of polygraph evidence in court, and the relevance of
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Gastwirth’s work to the legal question of admissibility.
John C. Kircher and David C. Raskin point out that
the problem of low base rates has been discussed for
many years in the psychology literature, and describe
the many different contexts in which polygraph tests
are used. Janet Wittes emphasizes that the context of
a medical screening determines whether the sensitiv-
ity or the specificity of the test is more important.
Judith D. Goldberg points out that not only preva-
lence, but also false positive and false negative rates,
can vary from group to group. Seymour Geisser
sketches a Bayesian predictive approach to the prob-
lems addressed by Gastwirth. Finally, Beth C. Gladen
comments that in many situations the application of
a confirmatory test following a positive response
would make variance calculations relatively unimpor-
tant.

* * *

In his article, “Uncertainty, policy analysis, and
statistics,” James S. Hodges states that “No existing
school of statistical thinking provides a comprehen-
sive framework for considering the various types of
uncertainty and the tradeoffs among them that ana-
lysts must make.” He describes three major types of
uncertainty: (1) structural uncertainty, which is un-
certainty about the model that is used; (2) risk, which
is uncertainty due to statistical or stochastic variabil-
ity given the model; and (3) technical uncertainty,
which is uncertainty due to data processing and the
use of approximations. He argues that the absence of
a system that properly accounts for all these types
“creates an inherent tendency for analyses to under-
state uncertainty about predictions . . . which can lead
to invisible biases in policy considerations.” He be-
lieves that the de Finetti approach comes closest to
providing such a system, and he tries in this paper to
develop further the connection between that approach
and real policy applications.

In his comment, David Freedman states that “Good
statistical analysis can be done in either the frequen-
tist or the Bayesian framework. However, for either
approach to succeed, the analyst has to get the model
right, or close enough.” Seymour Geisser points out
that there is a fundamental principle in the de Finetti
approach to statistics “that statisticians (even Baye-
sian predictivists) often ignore.” Peter J. Huber com-
ments on “the problem of the infinite regress, and the
question of whether and when to combine different
kinds of uncertainty.” Joseph B. Kadane stresses three
important aspects of de Finetti’s approach: the subjec-
tivity of probability, the emphasis on prevision and
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