Fairouz Kamareddine, Twan Laan, and Rob Nederpelt
A Modern Perspective on Type Theory: From its Origins until Today Applied Logic Series, Vol. 29
Dordrecht/Boston: Kluwer Academic Publishers, 2004
xiv +357 pp. ISBN 1402023340

REVIEW

VLADIK KREINOVICH

In 1902, Bertrand Russell discovered a famous paradox of naive set theory-that for the set $S=\{x: x \notin x\}, S \in S$ if and only if $S \notin S$. The paradox comes from the fact that traditional set theory allows selfreference: once we have defined a new set (such as Russell's set S), we can then ask whether the new set is an element of itself. To avoid this (and similar) self-reference paradoxes and still allow mathematically useful constructions of sets of sets etc., Russell introduced the following idea.

We start with known consistent sets of the standard type. Based on these sets, we can form new sets, e.g., by considering all standard sets that satisfy a given property $P:\{x$ is of standard type : $P(x)\}$. By definition, these sets only contain sets of the standard type; so while we can legitimately consider a new set $S=\{x$ is of standard type : $x \notin$ $x\}$, this set will contain only standard sets and not new sets (like the set S itself). These new sets form the first level in the set hierarchy.

We can also consider sets of such first level sets, i.e., sets of the form $\{x$ is of first level : $P(x)\}$; these sets form the next (2nd) level, etc. Formally, we must explicitly assign to each variable x an integer value called its type, with the understanding that possible values of this variable x are sets of this type. The set $\left\{x^{a}: P\left(x^{a}\right)\right\}$ is then of type $a+1$, the set $\left\{x^{a}: \forall y^{b} \exists z^{c} P\left(x^{a}, y^{b}, z^{c}\right)\right\}$ is of type $\max (a, b, c)+1$, and the formula $x^{a} \in y^{b}$ only makes sense if $a<b$.

In this theory, if elements of the set A are of type a, then subsets of A are of type $a+1$. If elements of the set B are of type b, then pairsi.e., elements of the Cartesian product $A \times B$-have a type max (a, b). A function $f: A \rightarrow B$ is usually defined as a set of pairs $f \subseteq A \times B$,

