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What is “automated reasoning”? Crudely speaking, automated
reasoning is an area whose main objective is to make computers solve
hard open problems in mathematics and in other well-defined formal
areas.

Is it successful? Oh yes, there have been quite a few success sto-
ries when automated reasoning programs succeeded in solving long-
standing open mathematical problems.

Probably the most well-known of these problems is the antiautomor-
phism semigroup problem. This problem was originally formulated by
a well-known algebraist I. Kaplansky as a challenge to the automated
reasoning community. Let S be a semigroup, i.e., a set with an associa-
tive operation ∗. A mapping f : S → S is called an antiautomorphism
if f(x ∗ y) = f(y) ∗ f(x) for all x and y. Many semigroups have anti-
automorphisms: e.g., for every natural number n, transposition is an
antiautomorphism on the semigroup of all n×n matrices. This partic-
ular antiautomorphism is an involution, i.e., f(f(x)) = x for every x.
At the time when Kaplansky formulated this question, in every known
finite semigroup with an antiautomorphism there was also an antiau-
tomorphism which is an involution. It was therefore conjectured that
every finite semigroup with an antiautomorphism has an antiautomor-
phism which is an involution. Mathematicians tried hard, but could
neither prove this conjecture nor find a counterexample.

An automated reasoning program succeeded in finding a non-trivial
counterexample — a semigroup of 83-th order!
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