The Review of Modern Logic Volume 9 Numbers 1 & 2 (November 2001–November 2003) [Issue 29], pp. 29–52.

THE FORMAL THEORY OF SYLLOGISMS

MARCEL CRABBÉ

Contents

1. Introduction	29
2. The language	31
3. Proof theory	32
3.1 The derivation rules	32
3.2 Normalization of derivations	33
4. Traditional semantics: the notion of correct syllogism	36
4.1 Special cases: antilogism and reasoning	38
4.2 The correct affirmative syllogisms	38
4.3 Traditional completeness	41
5. Modern semantics	44
5.1 General interpretation	44
5.1.1 Generating Aristotelian algebras	45
5.2 Class interpretations	46
5.2.1 Aristotelian families	46
5.2.2 Reflexive algebras	46
5.2.3 Generating reflexive algebras	48
5.2.4 Proof theory for class interpretations	50
6. Decidability	50
References	51

1. INTRODUCTION

By traditional logic is generally meant a whole body of theories that formed the realm of logic before contemporary logic was discovered by Frege. This logic is not strictly speaking Aristotle's theory, though it stemmed from Aristotle. Indeed it took also advantage of contributions by the Stoics and developed to a great extent during the Middle Ages and in modern times. It is certainly not limited to the theory of syllogisms, although this formed its core, at least in education.

© 2003 The Review of Modern Logic.