REV. MAT. IBEROAMERICANA, 18 (2002), 325-354

Harnack's inequality for solutions of some degenerate elliptic equations

Ahmed Mohammed

Abstract

We prove a Harnack's inequality for non-negative solutions of some degenerate elliptic operators in divergence form with the lower order term coefficients satisfying a Kato type condition.

1. Introduction.

In this paper, we study the behavior of solutions of certain degenerate elliptic equations Lu = 0, where L is the operator

$$L := -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial}{\partial x_j} \right) + \sum_{i=1}^{n} b_i(x) \frac{\partial}{\partial x_i} + V(x) \,.$$

The coefficients a_{ij} are real-valued measurable functions whose coefficient matrix $A(x) := (a_{ij}(x))$ is symmetric and satisfies

(1.1)
$$\omega(x) |\xi|^2 \le \langle A(x)\xi,\xi \rangle \le v(x) |\xi|^2.$$

Here $\langle \cdot, \cdot \rangle$ denotes the usual inner product on \mathbb{R}^n , and v, ω are non-negative functions which will be described below.

Let us fix some notations that will be used throughout the paper. For functions f and g, we shall write $f \leq g$ to indicate that $f \leq Cg$ for some

²⁰⁰⁰ Mathematics Subject Classification: 35B45, 35B65, 35J10, 35J15, 35J70. Keywords: Kato class, Green's function, Harnack's inequality.