Michal Málek, Institute of Mathematics, Silesian University, 746 01 Opava, Czech Republic, e-mail:Michal.Malek@fpf.slu.cz

A COUNTEREXAMPLE OF AN EXTREMELY CHAOTIC FUNCTION

Abstract

We exhibit an example of continuous function f on the interval, which is extremely chaotic but not transitive, disproving a conjecture by Bruckner and Hu.

Bruckner and Hu stated the following result: Under the Continuum Hypothesis, a continuous function f defined on $I_0 = [0, 1]$ is chaotic if and only if f^2 is nomadic [1].

Here "nomadic" means transitive and "chaos" means extremal chaos in the following sense. There is an uncountable set S such that, for every two different points $x, y \in S$,

$$\limsup_{n \to \infty} |f^n(x) - f^n(y)| = 1, \tag{1}$$

$$\liminf_{n \to \infty} |f^n(x) - f^n(y)| = 0.$$
⁽²⁾

In this note, we show that the assertion above is not true. Recall, that a function f on I_0 is called *d*-chaotic, if there exists an uncountable set S such that

$$\limsup_{n \to \infty} |f^n(x) - f^n(y)| = d \tag{3}$$

and (2) are satisfied for any two different points x, y in S. A basic set for f is any maximal infinite ω -limit set $\tilde{\omega}$ of f containing a periodic point. Such a set is indecomposible if, for every $n \in \mathbb{N}, \tilde{\omega}$ is a basic set of f^n .

Lemma 1. A basic set $\tilde{\omega}$ is indecomposible if and only if for any interval J such that $J \cap \tilde{\omega}$ is infinite there exists $W = \lim_{n \to \infty} f^n(J)$ with $\overline{W} \supset \tilde{\omega}$.

Key Words: basic sets, extremal chaos, transitivity

Mathematical Reviews subject classification: 26A18, 58F13

Received by the editors July 22, 1997

^{*}The research was supported, in part, by the Grant Agency of Czech Republic, grant No. 201/97/0001.

³²⁵