T. H. Steele, Department of Mathematics, Weber State University, Ogden, UT 84408-1702, e-mail:thsteele@weber.edu

AN ω -LIMIT SET FOR A LIPSCHITZ FUNCTION WITH ZERO TOPOLOGICAL ENTROPY

Abstract

Let Q be the middle thirds Cantor set in [0, 1], and take C to be the countable set containing the midpoints of the intervals complementary to Q, together with $\{-\frac{1}{6}\}$. We develop a Lipschitz function $f: [-\frac{1}{4}, 1] \rightarrow [-\frac{1}{4}, 1]$ that possesses zero topological entropy, and for which $Q \cup C$ – an uncountable set with isolated points – is an ω -limit set of f.

1 Introduction

The iterative properties of continuous functions have received considerable attention in recent years. In particular, much has been learned about the structure of the ω -limit sets that various classes of continuous functions possess. Bruckner and Smítal have characterized the structure of ω -limit sets for the class of continuous functions as well as those continuous functions with zero topological entropy [2], [3].

Theorem 1. Let F be a nonempty closed set. Then F is an ω -limit set for a continuous function if and only if F is either nowhere dense, or F is a union of finitely many nondegenerate closed intervals.

Theorem 2. Let $F \subset (0,1)$ be a nonempty infinite closed set. Then F is an ω -limit set for a continuous function $f : [0,1] \to [0,1]$ with zero topological entropy if and only if $F = Q \cup C$, where Q is a Cantor set, and C is countable, dense in F if nonempty, and such that for any interval J contiguous to Q, $\operatorname{card}(J \cap C) \leq 1$ if 0 or 1 is in J, and $\operatorname{card}(J \cap C) \leq 2$ otherwise.

Key Words: ω -limit set, Lipschitz function, topological entropy

Mathematical Reviews subject classification: 26A18

Received by the editors February 10, 1997

²⁸¹