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ON THE NON-EXISTENCE OF CERTAIN
BOUNDED LINEAR PROJECTIONS

Abstract

It is known that there is a bounded linear operator A from the
space of bounded real functions to the subspace of bounded Lebesgue-
measurable functions such that for any Lebesgue-measurable function f
we have Af = f for a.e. x ∈ R. S. A. Argyros proved that A could not
be a projection; i.e. we can always find a bounded measurable function
f and a point x ∈ R for which (Af)(x) 6= f(x).

We give an independent proof and in particular we prove that there
does not exist a projection to the space of functions with the Baire
property, either.

S. A. Argyros proved in [AR] that there does not exist a bounded linear
projection from the space of all bounded real functions to the subspace of
all bounded Lebesgue-measurable functions and the subspace of all bounded
Borel-measurable functions.

In this paper we give an independent proof, and our proof covers more
general cases as well. In particular, we prove that such a projection does not
exist to the subspace of functions with the Baire property, either.

More precisely, we show that if M ⊆ P (R) is a σ-algebra, if there is a

σ-ideal K ⊂M, K 6=M and if P ⊆ N def
= M\K such that

(0) {x} ∈ M for all x ∈ R;

(1) for every N ∈ N there exists P ⊆ N,P ∈ P;

(2) given more than ω elements of N there exist infinitely many of them
with non-empty intersection;

(3) |P| ≤ 2ω and |P | = 2ω for all P ∈ P,
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