Zbigniew Grande, Institute of Mathematics, Pedagogical University, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland e-mail: grande@wsp.bydgoszcz.pl ## ON THE MEASURABILITY OF FUNCTIONS DEFINED ON THE PRODUCT OF TWO TOPOLOGICAL SPACES ## Abstract Some conditions implying the measurability of functions defined on the product of two topological spaces are investigated. Let \mathbb{R} denote the set of all reals and let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Moreover, let μ_1 and μ_2 respectively, be σ -finite measures defined on some σ -fields $\mathcal{M}_1 \supset \mathcal{T}_X$ and $\mathcal{M}_2 \supset \mathcal{T}_Y$. Assume that - (1) for every set $A \in \mathcal{M}_1$ with $\mu_1(A) > 0$ there is a set $B \in \mathcal{T}_X$ such that $B \subset A$ and $\mu_1(B) > 0$; - (2) $\mu_1(A) > 0$ for all nonempty sets $A \in \mathcal{T}_X$. A function $f: X \to \mathbb{R}$ is called \mathcal{T}_X -quasicontinuous (\mathcal{T}_X -cliquish) at a point $x \in X$ ([5] if for every positive real η and for every set $U \in \mathcal{T}_X$ containing x there is a nonempty set $V \in \mathcal{T}_X$ such that $V \subset U$ and $|f(v) - f(x)| < \eta$ for all points $v \in V$ ($\operatorname{osc}_V f < \eta$, where $\operatorname{osc}_V f$ denotes the diameter of the set f(V)). In the proofs we will use the following Davies lemma ([2, 3]): **Lemma 1.** Suppose that the measure μ_1 is complete and a function $f: X \to \mathbb{R}$ is such that for every positive real η and for every set $A \in \mathcal{M}_1$ with $\mu_1(A) > 0$ there is a set $B \in \mathcal{M}_1$ such that $B \subset A$, $\mu_1(B) > 0$ and $\operatorname{osc}_B f < \eta$. Then the function f is μ_1 -measurable. **Remark 2.** If a function $f: X \to \mathbb{R}$ is measurable with respect to μ_1 , then it is \mathcal{T}_X -cliquish at every point $x \in X$; $[\]mbox{Key Words:}$ continuity, quasicontinuity, cliquishness, measurability, density topology, product measure. Mathematical Reviews subject classification: 28A35, 28A10, 54C08, 54C30 Received by the editors June 16, 1997 ^{*}Supported by Bydgoszcz Pedagogical University grant 1997