Marek Balcerzak^{*}, Institute of Mathematics, Łódź Technical University, al. Politechniki 11, 90-924 Łódź, Poland e-mail: mbalce@krysia.uni.lodz.pl Joanna Peredko; Institute of Mathematics, Łódź Technical University, al. Politechniki 11, 90-924 Łódź, Poland e-mail: joannape@ck-sg.p.lodz.pl

DESCRIPTIVE CHARACTER OF SETS OF DENSITY AND \mathcal{I} -DENSITY POINTS

Abstract

Let X = [a, b] and $A \subset X^2$. We extend the theorem of Mauldin stating the set of $\langle x, y \rangle \in X^2$ such that y is a density point of A_x , provided that A is Borel is itself a Borel set. We prove the corresponding result if A is analytic or coanalytic and show the analogous statements in the category case.

1 Introduction

Let X = [a, b]. If $E \subset X$ is a Lebesgue measurable set, $\varphi(E)$ denotes the set of all density points of E. If $E \subset X$ possesses the Baire property, $\varphi_{\mathcal{I}}(E)$ denotes the set of all \mathcal{I} -density points, i.e., the density points in the sense of category, introduced by Wilczyński in [W]. For $A \subset X^2$ and $x \in X$, we put

$$A_x = \{ y \in X : \langle x, y \rangle \in A \};$$

the so-called x-section of A. By LM_k (respectively, BP_k) we denote the class of Lebesgue measurable sets (sets with the Baire property) in \mathbb{R}^k for k = 1, 2. For $A \subset X^2$ we put

$$D(A) = \{ \langle x, y \rangle \in X^2 : A_x \in LM_1 \& y \in \varphi(A_x) \};$$

$$D_{\mathcal{I}}(A) = \{ \langle x, y \rangle \in X^2 : A_x \in BP_1 \& y \in \varphi_{\mathcal{I}}(A_x) \}.$$

Key Words: Borel set, analytic set, density point, \mathcal{I} -density point, section properties Mathematical Reviews subject classification: 04A15,28A05,54H05

Received by the editors December 12, 1996

^{*}This work was partially supported by NSF Cooperative Research Grant INT-9600548 and its Polish part financed by KBN

¹³¹