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DESCRIPTIVE CHARACTER OF SETS OF
DENSITY AND Z-DENSITY POINTS

Abstract

Let X = [a,b] and A C X?. We extend the theorem of Mauldin
stating the set of (x,y) € X? such that y is a density point of A,
provided that A is Borel is itself a Borel set. We prove the corresponding
result if A is analytic or coanalytic and show the analogous statements
in the category case.

1 Introduction

Let X = [a,b]. If E C X is a Lebesgue measurable set, ¢(FE) denotes the
set of all density points of E. If E C X possesses the Baire property, o7 (F)
denotes the set of all Z-density points, i.e., the density points in the sense of
category, introduced by Wilczytiski in [W]. For A C X2 and = € X, we put

Ay ={y € X : (z,y) € A}

the so-called x-section of A. By LMy (respectively, BPy) we denote the class
of Lebesgue measurable sets (sets with the Baire property) in R* for k = 1,2.
For A C X? we put

D(A) = {<x7y> € X2 A, € LMy &y € @(Az)}y

Dz(A) = {(z,y) € X?: A, € BP; &y € pr(A,)}.
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