THE STRICT DETERMINATENESS OF CERTAIN INFINITE GAMES

PHILIP WOLFE

1. Introduction. Gale and Stewart [1] have discussed an infinite two-person game in extensive form which is the generalization of a game as defined by Kuhn [3] obtained by deleting the requirement of finiteness of the game tree and regarding as plays all unicursal paths of maximal length originating in the distinguished vertex x_0 . In a winlose game the set S of all plays is divided into two sets S_I and S_{II} such that player I wins the play s if $s \in S_I$ and player II wins it if $s \in S_{II}$. Gale and Stewart have shown that a two-person infinite win-lose game of perfect information with no chance moves (called a GS game here) is strictly determined if S_I belongs to the smallest Boolean algebra containing the open sets of a certain topology for S. Here we answer affirmatively the question posed by them: Is a GS game strictly determined if S_I is a G_{δ} (or, equivalently, an F_{σ})? The notation and results of [1] are used throughout, as well as the partial ordering of X given by: x > y if $f^n(x) = y$ for some $n \ge 1$.

2. Alternative description of S_I . Let Γ be the game $(x_0, X_I, X_{II}, X, f, S, S_I, S_{II})$, where

$$S_I = \bigwedge_{n=1}^{\infty} E_n$$
 ,

 $E_1 \supseteq E_2 \supseteq \cdots$, and E_n is open. Following [3], let the rank rk(x), for $x \in X$, be the unique k such that $f^k(x) = x_0$. As in [1], $\mathfrak{U}(x)$ is the set of all plays passing through x (the topology for S is that in which $\mathfrak{U}(x)$ is a neighborhood of each play in it). Then for each n,

$$E_n = \bigcup \{ \mathfrak{U}(y) : \mathfrak{U}(y) \subseteq E_n \} ;$$

and since for any $y \in X$ we have

$$\mathfrak{U}(y) = \bigcup \{\mathfrak{U}(z) : f(z) = y\},\$$

with

$$rk(z) = 1 + rk(y)$$
,

Received October 3, 1953. The work in this paper was done during the author's tenure of an Atomic Energy Commission Predoctoral Fellowship.