SOME INCLUSIONS IN MULTIPLIERS

RAOUF DOSS

G is a compact abelian group. The main result of this paper is that if T is a (p, 1) multiplier, 1 , then T is a <math>(p, s) multiplier for all s in the range $1 \leq s < p$ and also an (r, r) multiplier for p < r < p' (p' conjugate of p).

An operator T defined on $L^{p}(G)$, whose range lies in the set of measurable functions on G is said to be of *weak type* (p, q) if there is a number A such that

$$m(\{x \in G: |Tf(x)| > t\}) \leq \left(\frac{A ||f||_p}{t}\right)^q$$

for all $f \in L^{p}$ and all t > 0. (*m* is Haar measure.) *T* need not be linear.

A linear operator, defined on $L^{p}(G)$ is said to be of strong type (p, q) if there exists a number A such that

$$||Tf||_q \leq A ||f||_p$$
.

If T is of strong type (p, q) and commutes with translations (or equivalently with convolutions), then T is called a (p, q) multiplier. In this case we write $T \in M_p^q$. The Banach space of (p, p) multipliers is denoted M_p .

If $T \in M_p^q$, then there is a function φ on the dual of G such that $(Tf)^{\uparrow} = \varphi \hat{f}$, for all $f \in L^p$, where \uparrow denotes the Fourier transformation. T and φ are in one-to-one correspondence and we shall often write T_{φ} for T.

Using a deep theorem of E. M. Stein [3] on limits of sequences of operators we prove the following theorems:

THEOREM 1. If $T \in M_p^1$, $1 \leq p \leq 2$ then T is of weak type (p, p).

THEOREM 2. (converse.) Let T be a linear map of L^p , 1which commutes with translation and is of weak type <math>(p, p). Then T is of strong type (p, s) for all s in the range $1 \leq s < p$.

These theorems imply the following corollaries.

COROLLARY 1. If $T \in M_p^1$, $1 , then <math>T \in M_p^s$ for all s in the range $1 \leq s < p$.

COROLLARY 2. If $T \in M_p^1$, $1 \leq p \leq 2$, then $T \in M_r$ for all r in the