ORDER-INDUCED TOPOLOGICAL PROPERTIES

Susan J. Andima¹ and W. J. Thron

Each topology \mathcal{T} on a set X may be associated with a preorder relation $R_{\mathcal{F}}$ on X defined by $\langle a, b \rangle \in R_{\mathcal{F}}$ iff every open set containing b contains a. Although the correspondence is many-to-one, there is always a least topology, $\mu(R)$, and a greatest topology, $\nu(R)$, having a given preorder R. This leads to a natural correspondence between order properties and some topological properties and to the concept of an order-induced topological property. We show that a number of familiar topological properties (mostly lower separation axioms) are order-induced and also consider some new properties suggested by order properties. Let T_p be an order-induced topological property with associated order property K_p . We characterize minimal and maximal T_p as follows: A topological space (X, \mathcal{T}) is maximal T_p iff $\mathcal{F} = \nu(R_{\mathcal{F}})$ and $R_{\mathcal{F}}$ is minimal K_p . With the imposition of a further condition on the class K_{ρ} (satisfied by most properties under discussion), (X, \mathcal{F}) is minimal T_{ρ} iff $\mathcal{I} = \mu(R_{\mathcal{I}})$ and $R_{\mathcal{I}}$ is maximal K_{p} . We apply these general theorems to a number of order-induced properties and conclude with an example to show that, for two particular properties, ${\mathcal T}$ may be minimal T_p even though $R_{\mathcal{F}}$ is not maximal K_p .

1. Introduction. Correspondences between topologies and preorders on X similar to that assigning $R_{\mathcal{F}}$ to \mathcal{T} have been described by several mathematicians. Ore in 1943 [14] associated with each closure operator on a fixed set X a preorder relation which, for the topological closure operators, is exactly the same as $R_{\mathcal{F}}$. Others have restricted their attention to the "principal" or "discrete" spaces in which arbitrary intersections of open sets are open. Linfield in his thesis [11] of 1925 studied principal topologies whose preorders were equivalence relations [see 7], and in 1935 both Alexandroff [1] and Tucker [20] described a oneto-one correspondence between T_0 principal topologies and partial orders. Destouches in 1937 drew on the work of Linfield and Alexandroff to study principal spaces in general [6], and Steiner in 1966 showed that the lattice of principal topologies is anti-isomorphic to the lattice of preorder relations on X [16]. Alexandroff, Tucker, and Steiner all assigned the relation $R_{\mathcal{I}}^{-1}$ to \mathcal{I} , and Lorrain (1969) used both $R_{\mathcal{I}}^{-1}$ and $R_{\mathcal{I}}$ to define functors from the category of principal spaces to the category of preordered sets [13].

¹ Formerly Susan J. Zimmerman.