CHAPTER II

6. Preliminary Lemmas of Lie Type

Hypothesis 6.1.
(i) p is a prime, \mathfrak{F} is a normal S_{p}-subgroup of $\mathfrak{B u}$, and \mathfrak{U} is a non identity cyclic p^{\prime}-group.
(ii) $C_{\mathfrak{u}}(\mathfrak{P})=1$.
(iii) \mathfrak{S}^{\prime} is elementary abelian and $\mathfrak{F}^{\prime} \cong \boldsymbol{Z}(\mathfrak{F})$.
(iv) $|\mathfrak{F u}|$ is odd.

Let $\mathfrak{u}=\langle U\rangle,|\mathfrak{u}|=u$, and $|\mathfrak{P}: D(\mathfrak{P})|=p^{n}$. Let \mathscr{L} be the Lie ring associated to \mathfrak{P} ([12] p. 328). Then $\mathscr{L}=\mathscr{L}_{1}^{*} \oplus \mathscr{L}_{2}$ where \mathscr{L}_{1}^{*} and \mathscr{L}_{1} correspond to $\mathfrak{F} / \mathfrak{F}^{\prime}$ and \mathfrak{F}^{\prime} respectively. Let $\mathscr{L}_{1}=\mathscr{L}_{1}^{*} / p \mathscr{L}_{1}{ }^{*}$. For $i=1,2$, let U_{i} be the linear transformation induced by U on \mathscr{L}_{i}.

Lemma 6.1. Assume that Hypothesis 6.1 is satisfied. Let ε_{1}, \cdots, ε_{n} be the characteristic roots of U_{1}. Then the characteristic roots of U_{2} are found among the elements $\varepsilon_{i} \varepsilon_{j}$ with $1 \leqq i<j \leqq n$.

Proof. Suppose the field is extended so as to include $\varepsilon_{1}, \cdots, \varepsilon_{n}$. Since \mathfrak{U} is a p^{\prime}-group, it is possible to find a basis x_{1}, \cdots, x_{n} of \mathscr{L}_{1} such that $x_{i} U_{1}=\varepsilon_{i} x_{i}, 1 \leqq i \leqq n$. Therefore, $x_{i} U_{1} \cdot x_{j} U_{1}=\varepsilon_{i} \varepsilon_{j} x_{i} \cdot x_{j}$. As U induces an automorphism of \mathscr{L}, this yields that

$$
\left(x_{i} \cdot x_{j}\right) U_{1}=x_{i} U_{1} \cdot x_{j} U_{1}=\varepsilon_{i} \varepsilon_{j} x_{i} \cdot x_{j} .
$$

Since the vectors $x_{i} \cdot x_{j}$ with $i<j$ span \mathscr{L}_{2}, the lemma follows.
By using a method which differs from that used below, M. Hall proved a variant of Lemma 6.2. We are indebted to him for showing us his proof.

Lemma 6.2. Assume that Hypothesis 6.1 is satisfied, and that U_{1} acts irreducibly on \mathscr{L}_{1}. Assume further that $n=q$ is an odd prime and that U_{1} and U_{2} have the same characteristic polynomial. Then $q>3$ and

$$
u<3^{q / 2}
$$

Proof. Let $\varepsilon^{p^{i}}$ be the characteristic roots of $U_{1}, 0 \leqq i<n$. By Lemma 6.1 there exist integers i, j, k such that $\varepsilon^{p^{i} \varepsilon^{j}}=\varepsilon^{p^{k}}$. Raising this equation to a suitable power yields the existence of integers a and b with $0 \leqq a<b<q$ such that $\varepsilon^{p^{a}+p^{b}-1}=1$. By Hypothesis 6.1 (ii), the preceding equality implies $p^{a}+p^{b}-1 \equiv 0(\bmod u)$. Since U_{1} acts irreducibly, we also have $p^{a}-1 \equiv 0(\bmod u)$. Since \mathfrak{u} is a p^{\prime}-group,

