CHAPTER II

6. Preliminary Lemmas of Lie Type

Hypothesis 6.1.

(i) p is a prime, \mathfrak{P} is a normal S_p-subgroup of \mathfrak{PU} , and \mathfrak{U} is a non identity cyclic p'-group.

(ii) $C_{11}(\mathfrak{P}) = 1$.

(iii) \mathfrak{P}' is elementary abelian and $\mathfrak{P}' \subseteq Z(\mathfrak{P})$.

(iv) $|\mathfrak{PU}|$ is odd.

Let $\mathfrak{U} = \langle U \rangle$, $|\mathfrak{U}| = u$, and $|\mathfrak{P}: D(\mathfrak{P})| = p^*$. Let \mathscr{L} be the Lie ring associated to \mathfrak{P} ([12] p. 328). Then $\mathscr{L} = \mathscr{L}_1^* \bigoplus \mathscr{L}_1^*$ where \mathscr{L}_1^* and \mathscr{L}_2 correspond to $\mathfrak{P}/\mathfrak{P}'$ and \mathfrak{P}' respectively. Let $\mathscr{L}_1 = \mathscr{L}_1^*/p\mathscr{L}_1^*$. For i = 1, 2, let U_i be the linear transformation induced by U on \mathscr{L}_i .

LEMMA 6.1. Assume that Hypothesis 6.1 is satisfied. Let $\varepsilon_1, \dots, \varepsilon_n$ be the characteristic roots of U_1 . Then the characteristic roots of U_2 are found among the elements $\varepsilon_i \varepsilon_j$ with $1 \leq i < j \leq n$.

Proof. Suppose the field is extended so as to include $\varepsilon_1, \dots, \varepsilon_n$. Since U is a p'-group, it is possible to find a basis x_1, \dots, x_n of \mathscr{L}_1 such that $x_i U_1 = \varepsilon_i x_i$, $1 \leq i \leq n$. Therefore, $x_i U_1 \cdot x_j U_1 = \varepsilon_i \varepsilon_j x_i \cdot x_j$. As U induces an automorphism of \mathscr{L} , this yields that

$$(x_i \cdot x_j) U_1 = x_i U_1 \cdot x_j U_1 = \varepsilon_i \varepsilon_j x_i \cdot x_j$$

Since the vectors $x_i \cdot x_j$ with i < j span \mathcal{L}_2 , the lemma follows.

By using a method which differs from that used below, M. Hall proved a variant of Lemma 6.2. We are indebted to him for showing us his proof.

LEMMA 6.2. Assume that Hypothesis 6.1 is satisfied, and that U_1 acts irreducibly on \mathcal{L}_1 . Assume further that n = q is an odd prime and that U_1 and U_2 have the same characteristic polynomial. Then q > 3 and

 $u < 3^{q/2}$

Proof. Let ε^{p^i} be the characteristic roots of U_1 , $0 \leq i < n$. By Lemma 6.1 there exist integers i, j, k such that $\varepsilon^{p^i}\varepsilon^{p^j} = \varepsilon^{p^k}$. Raising this equation to a suitable power yields the existence of integers aand b with $0 \leq a < b < q$ such that $\varepsilon^{p^a+p^{b-1}} = 1$. By Hypothesis 6.1 (ii), the preceding equality implies $p^a + p^b - 1 \equiv 0 \pmod{u}$. Since U_1 acts irreducibly, we also have $p^q - 1 \equiv 0 \pmod{u}$. Since \mathfrak{U} is a p'-group,