
ON THE REALIZABILITY OF HOMOTOPY GROUPS

AND THEIR OPERATIONS

S Z E - T S E N liu

1. Introduction. Let /> be a given arcwise connected topological space and b0

a basic point of />'. 1 hen we obtain a sequence of homotopy groups

TT^B), 7T2(B), ' " , TTniβ), "••

Ίhe fundamental group TT^B) is in general non-abelian and written multiplicatively.

All higher homotopy groups ττn{B), n > 2, are abelian and written additively. The

group v{(B) operates on the left of every higher homotopy group πn(B), n > 2; that

is to say, for every w G ^\{B) and every a G τίn{B)9 a unique element wa G τrn{B)

is determined, and

w\\a\ + α 2 ) — wa\ + wd2, wiywia) — {wiwojdj lα = α .

For arbitrary elements a£.τrm(B) and b £.ττn{B), m > 2, n > 2, a Whitehead product

c ° i is defined [10, p . 4 1 l ] , which is an element of 77m+7ϊ_ι (B). The Whitehead

product is known to be bilinear; namely,

(αi + α 2 ) ° δ ^ α j o 6 - f α 2 ° 6, α ° (6χ H- 6 2 ) = α ° ό x + α o 6 2 .

Roughly speaking, the realizability problem is whether these homotopy groups

and mutual operations described above are otherwise completely arbitrary. It can

be formulated precisely as follows. Let

771

be a given sequence of abstract groups. All groups except the first one are abelian

and additive, while 77£ is written multiplicatively. There are given two kinds of

operations between these groups. First, the group 77! operates on the left of every

group 77̂  with n > 2. Secondly, for arbitrary elements (A G?7m, β G 7 7 ^ m > 2,

n > 2, a bilinear product GC ° β is defined and is an element of the group
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