ON THE BARYCENTRIC HOMOMORPHISM IN A SINGULAR COMPLEX

PAUL V. REICHELDERFER

INTRODUCTION

0.1. Radó has introduced and studied the following approach to singular homology theory (see [2; 3; 4] for details). With a general topological space X associate a complex R = R(X) in the following manner. For integers $p \ge 0$, let v_0, \dots, v_p be a sequence of p + 1 points in Hilbert space E_{∞} , which are not required to be distinct or linearly independent, and let $|v_0, \dots, v_p|$ denote their convex hull. Suppose that T is a continuous mapping from $|v_0, \dots, v_p|$ into X. Then the sequence v_0, \dots, v_p jointly with T determines a p-cell in R, which is denoted by $(v_0, \dots, v_p, T)^R$. The free Abelian group C_p^R generated by the p-cells in R is termed the group of integral p-chains in R. For integers $p < 0, C_p^R$ is defined to be the group consisting of the zero element alone. The boundary operator $\partial_p^R: C_p^R \to C_{p-1}^R$ is defined, in the usual manner, as the trivial homomorphism if $p \le 0$, and by the relation

$$\partial_p^R (v_0, \cdots, v_p, T)^R = \sum_{i=0}^p (-1)^p (v_0, \cdots, \hat{v}_i, \cdots, v_p, T)^R$$

if p > 0. Since $\partial_{p-1}^R \partial_p^R = 0$, one introduces the subgroup Z_p^R of p-cycles in C_p^R and the subgroup B_p^R of p-boundaries in C_p^R in the customary way, and defines the quotient group of Z_p^R with respect to B_p^R to be the homology group H_p^R .

0.2. The approach to singular homology theory pursued by Radó differs from other approaches in that absolutely no identifications are made. Thus two p-cells $(v'_0, \dots, v'_p, T')^R$ and $(v''_0, \dots, v''_p, T'')^R$ are equal only if they are identical; that is, if $v'_i = v''_i$ for $i = 0, \dots, p$ and $T' \equiv T''$ on $|v'_0, \dots, v'_p|$ $= |v''_0, \dots, v''_p|$. In [3;4], Radó introduces a technique for making identifications in a general Mayer complex and applies his procedure to study identifications in R, particularly those which yield homology groups isomorphic to the H^R_p . It is a primary purpose of the present paper to pursue the matter further in

Received January 24, 1951.

Pacific J. Math. 2 (1952), 73-97