THEOREMS ON GENERALIZED DEDEKIND SUMS

T. M. Apostol

1. Introduction. Generalized Dedekind sums $s_{p}(h, k)$, defined by

$$
\begin{equation*}
s_{p}(h, k)=\sum_{\mu=1}^{k-1} \frac{\mu}{k} \bar{B}_{p}\left(\frac{h \mu}{k}\right)=\sum_{\mu=1}^{k-1} \frac{\mu}{k} B_{p}\left(\frac{h \mu}{k}-\left[\frac{h \mu}{k}\right]\right), \tag{1}
\end{equation*}
$$

were introduced by the author [1]. The integers h and k are assumed relatively prime, $B_{p}(x)$ is the p-th Bernoulli function, $B_{p}(x)$ the p-th Bernoulli polynomial (for definitions see $[1 ;(2.11),(2.12)]$), and $[x]$ is the greatest integer $\leq x$. For even values of the integer p the sums (1) are trivial (see [1; (4.13)]) and we assume in what follows that p is odd. These sums enjoy a reciprocity law, namely;

$$
(p+1)\left(h k^{p} s_{p}(h, k)+k h^{p} s_{p}(k, h)\right)
$$

$$
\begin{equation*}
=p B_{p+1}+\sum_{s=0}^{p+1}\binom{p+1}{s}(-1)^{s} B_{s} B_{p+1-s} h^{s} k^{p+1-s} . \tag{2}
\end{equation*}
$$

The B 's being Bernoulli numbers*. An arithmetic proof of (2) is given in [1] by a method closely related to a general summation technique recently developed by Mordell [5]. When $p=1$, the sums

$$
\begin{equation*}
s_{1}(h, k)=\sum_{\mu=1}^{k-1} \frac{\mu}{k}\left(\frac{h \mu}{k}-\left[\frac{h_{\mu}}{k}\right]-\frac{1}{2}\right) \tag{3}
\end{equation*}
$$

are known as Dedekind sums and are usually denoted by $s(h, k)$. Aside from being of interest from an arithmetical standpoint, these sums also occur in the asymptotic theory of partitions and have been studied in a large number of papers, for example [1], [3], [5], [6], [7], [8], [9], [10], and [11].

In this paper we establish a connection between the sums (1) and certain finite sums involving Hurwitz zeta functions which makes it possible to give a short analytic proof of (2).

[^0]
[^0]: *When $p>1$, the factor $(-1)^{s}$ may be suppressed in the summand in (2) because the terms corresponding to odd values of s vanish.

 Received September 11, 1951.
 Pacific J. Math. 2 (1952), 1-9

