SOME SPECIAL EQUATIONS IN A FINITE FIELD

L. Carlitz

1. The equation (1.1). Let $f_{i}(u), i=1, \cdots, r$ denote polynomials with coefficients in the finite field $G F(q), q=p^{n}$. We consider the equation

$$
\begin{equation*}
f_{1}\left(\xi_{1}\right)+\cdots+f_{r}\left(\xi_{r}\right)=\alpha \tag{1.1}
\end{equation*}
$$

$$
\left(\xi_{i}, \alpha \in G F(q)\right)
$$

let N denote the number of solutions of (1.1).
For $\beta \in G F(q)$, put

$$
e(\beta)=e^{2 \pi i t(\beta) / p}, \quad t(\beta)=\beta+\beta^{p}+\cdots+\beta^{p^{n-1}}
$$

Then we may write

$$
\begin{equation*}
q N=\sum_{\beta} e(-\alpha \beta) \sum_{\xi_{1}, \cdots, \xi_{r}} e\left(\beta f_{1}\left(\xi_{1}\right)+\cdots+\beta f_{r}\left(\xi_{r}\right)\right) \tag{1.2}
\end{equation*}
$$

where the summation extends over all numbers β, ξ_{i} of $G F(q)$. Now put

$$
\begin{equation*}
S(f)=\sum_{\xi} e(f(\xi)), \tag{1.3}
\end{equation*}
$$

where f is any polynomial with coefficients in $G F(q)$. Then (1.2) becomes

$$
q N=q^{r}+\sum_{\beta \neq 0} e(-\alpha \beta) \prod_{i=1}^{r} S\left(\beta f_{i}\right)
$$

2. Estimate for N. If $\operatorname{deg} f \leq 2, S(f)$ can be evaluated explicitly. However, we are primarily interested in the case $\operatorname{deg} f>2$. An estimate for $S(f)$ is given by the following:

Theorem 1. If $k=\operatorname{deg} f<p$, then

$$
\begin{equation*}
S(f)=O\left(q^{1-1 / k}\right) \tag{2.1}
\end{equation*}
$$

$$
(q \rightarrow \infty)
$$

Received March 19, 1952.
Pacific J. Math. 3 (1953), 13-24

