ON THE LINEAR INDEPENDENCE OF ALGEBRAIC NUMBERS

L. J. Mordell

1. Introduction. Besicovitch [1] has proved by elementary methods involving only the concept of the irreducibility of equations the following:

THEOREM. Let

$$a_1 = b_1 p_1, a_2 = b_2 p_2, \cdots, a_s = b_s p_s,$$

where p_1, p_2, \dots, p_s are different primes, and b_1, b_2, \dots, b_s are positive integers not divisible by any of these primes. If x_1, x_2, \dots, x_s are positive real roots of the equations

$$x^{n_1} - a_1 = 0, x^{n_2} - a_2 = 0, \cdots, x^{n_s} - a_s = 0,$$

and $P(x_1, x_2, \dots, x_s)$ is a polynomial with rational coefficients of degree less than or equ l to $n_1 - 1$ with respect to x_1 , less than or equal to $n_2 - 1$ with respect t x_2 , and so on, then $P(x_1 x_2, \dots, x_s)$ can vanish only if all its coefficients vanish.

It is rather surprising that this has not been proved before, since results of this kind occur as particular cases of a general investigation in the theory of algebraic numbers, and some have been known for many years. We have the well-known general problem:

PROBLEM. Let K be an algebraic number field, and let x_1, x_2, \dots, x_s be algebraic numbers of degrees n_1, n_2, \dots, n_s over K. When does the field $K(x_1, x_2, \dots, x_s)$ have degree $n_1 n_2 \dots n_s$ over K?

This holds if either the degrees or the discriminants over K of the fields $K(x_1)$, $K(x_2)$, \cdots , $K(x_s)$ are relatively prime in pairs. The first part is a simple consequence of the usual theory of reducibility when s = 2, and the extension is obvious. The second part for s = 2 is given as Theorem 87 in Hilbert's report on algebraic number fields, and its proof depends on algebraic number

Received July 8, 1952.

Pacific J. Math. 3 (1953), 625-630