ON THE LINEAR INDEPENDENCE OF ALGEBRAIC NUMBERS

L. J. Mordell

1. Introduction. Besicovitch [1] has proved by elementary methods involving only the concept of the irreducibility of equations the following:

Theorem. Let

$$
a_{1}=b_{1} p_{1}, a_{2}=b_{2} p_{2}, \cdots, a_{s}=b_{s} p_{s},
$$

where $p_{1}, p_{2}, \cdots, p_{s}$ are different primes, and $b_{1}, b_{2}, \cdots, b_{s}$ are positive integers not divisible by any of these primes. If $x_{1}, x_{2}, \cdots, x_{s}$ are positive real roots of the equations

$$
x^{n_{1}}-a_{1}=0, x^{n_{2}}-a_{2}=0, \cdots, x^{n_{s}}-a_{s}=0,
$$

and $P\left(x_{1}, x_{2}, \cdots, x_{s}\right)$ is a polynomial with rational coefficients of degree less than or equ al to $n_{1}-1$ with respect to x_{1}, less than or equal to $n_{2}-1$ with respect $t x_{2}$, and so on, then $P\left(x_{1} x_{2}, \cdots, x_{s}\right)$ can vanish only if all its coefficier ts vanish.

It is rather surprising that this has not been proved before, since results of this kind occur as particular cases of a general investigation in the theory of algebraic numbers, and some have been known for many years. We have the well-known general problem:

Problem. Let K be an algebraic number field, and let $x_{1}, x_{2}, \ldots, x_{s}$ be algebraic numbers of degrees $n_{1}, n_{2}, \cdots, n_{s}$ over K. When does the field $K\left(x_{1}, x_{2}, \cdots, x_{s}\right)$ have degree $n_{1} n_{2} \cdots n_{s}$ over K ?

This holds if either the degrees or the discriminants over K of the fields $K\left(x_{1}\right), K\left(x_{2}\right), \cdots, K\left(x_{s}\right)$ are relatively prime in pairs. The first part is a simple consequence of the usual theory of reducibility when $s=2$, and the extension is obvious. The second part for $s=2$ is given as Theorem 87 in Hilbert's report on algebraic number fields, and its proof depends on algebraic number

[^0]
[^0]: Received July 8, 1952.
 Pacific J. Math. 3 (1953), 625-630

