SOME DETERMINANTS INVOLVING BERNOULLI AND EULER NUMBERS OF HIGHER ORDER

FRANK R. OLSON

1. Introduction. In this paper we evaluate certain determinants whose elements are the Bernoulli, Euler, and related numbers of higher order. In the notation of Nörlund [1, Chapter 6] these numbers may be defined as follows: the Bernoulli numbers of order n by

(1.1)
$$\left(\frac{t}{e^t - 1}\right)^n = \sum_{v=0}^{\infty} \frac{t^v}{v!} B_v^{(n)},$$

the related "D" numbers by

(1.2)
$$\left(\frac{t}{\sin t}\right)^n \sum_{\nu=0}^{\infty} (-1)^{\nu} \frac{t^{2\nu}}{(2\nu)!} D_{2\nu}^{(n)} \qquad (D_{2\nu+1}^{(n)} = 0),$$

the Euler numbers of order n by

(1.3)
$$(\sec t)^n = \sum_{\nu=0}^{\infty} (-1)^{\nu} \frac{t^{2\nu}}{(2\nu)!} E_{2\nu}^{(n)} \qquad (E_{2\nu+1}^{(n)} = 0),$$

and the "C" numbers by

(1.4)
$$\left(\frac{2}{e^t+1}\right)^n = \sum_{\nu=0}^{\infty} \frac{t^{\nu}}{\nu!} \frac{C_{\nu}^{(n)}}{2^{\nu}}$$

(By *n* we denote an arbitrary complex number. When n = 1, we omit the upper index in writing the numbers; for example, $B_v^{(1)} = B_v$.)

We evaluate determinants such as

$$|B_i^{(x_j)}|$$
 (*i*, *j* = 0, 1, ..., *m*)

for the Bernoulli numbers, and similar determinants for the other numbers. The Received July 29, 1953.

Pacific J. Math. 5 (1955), 259-268