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1. Introduction. It is well known that there exist infinitely many quadratic

extensions of the rationale each with class number divisible by 2. In facf, if

the discriminant of the field contains more than two prime factors, then 2

divides the class number. Max Gut [ l ] generalized this result to show that

there exist infinitely many quadratic imaginary fields each with class number

divisible by 3. In this present paper we prove that there exist infinitely many

quadratic imaginary fields each with class number divisible by g where g is

any given rational integer.

The method extends to yield certain results about quadratic real fields, but

these are not as sharp as on quadratic imaginary fields.

2. Theorem. In the following we may assume without loss of generality

that g is positive, sufficiently large, and even.

LEMMA 1. Denote by N the number of square-free integers of the form

3 S - * 2 , where 2 | x, 0 < x < (2 .3^ ι ) l / z .

Then, for g sufficiently large,

JV > —
- 25

Proof. Denote by d the expression

(1) d = tf-

where

(2) 2 I * , 0 <x <
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