REMARK ON THE PRECEDING PAPER
 ALGEBRAIC EQUATIONS SATISFIED BY ROOTS OF NATURAL NUMBERS

E. G. Straus and O. Taussky

In the preceding paper [1] it was shown that the polynomials in question are factors of $\Phi_{h}\left(x^{k} / n\right)$ where Φ_{h} is the cyclotomic polynomial of order h and k, n are positive integers. The case $k=2$ was settled in [1, Lemma 2]. It will now be shown that this is essentially the only nontrivial case. For a different treatment of a somewhat related question see K. T. Vahlen [2].

First let us remark that we can exclude the case $n=m^{a}$ where d / k, $d>1$; since we may then set $y=x^{k / a} / m$ so that $\Phi_{h}\left(y^{a}\right)$ is either reducible with cyclotomic factors or equal to $\Phi_{h d}(y)$. We shall refer to n and $\Phi_{h}\left(x^{k} / n\right)$ which satisfy the above exclusion as simplified.

Theorem. The simplified polynomial $\Phi_{h}\left(x^{k} / n\right)$ is irreducible for all odd k. For $k=2 l$ the polynomial is reducible if and only if $\Phi_{n}\left(x^{2} / n\right)$ is reducible. In that case we have

$$
\begin{equation*}
\Phi_{h}\left(x^{k} / n\right)=g\left(x^{l}\right) g\left(-x^{l}\right), \tag{1}
\end{equation*}
$$

where the polynomials on the right are irreduciblc.
The proof is based on the following lemma.
Lemma. If $k>2$ and $n^{1 / k}$ is simplified then $n^{1 / k}$ is not contained in a cyclotomic field.

Proof. The Galois group of a cyclotomic field $R(\zeta)$ is Abelian and hence all subfields of $R(\zeta)$ are normal. The field $R\left(n^{1 / k}\right)$ is, however, not a normal field for $k>2$.

We can now prove the Theorem. Let ζ_{n} be a primitive h th root of unity. A zero ω of a simplified $\Phi_{h}\left(x^{k} / n\right)$ is a zero of

$$
\begin{equation*}
x^{k}-n \zeta_{h} \tag{2}
\end{equation*}
$$

and hence $R(\omega)$ is an algebraic extension of $R\left(\zeta_{h}\right)$. If the degree of $R(\omega)$ over $R\left(\zeta_{n}\right)$ were k then its degree over R would be $k \varphi(h)$. Hence $\Phi_{h}\left(x^{k} / n\right)$ is reducible if and only if (2) is reducible over $R\left(\zeta_{h}\right)$. Say

$$
\begin{equation*}
x^{k}-n \zeta_{n}=F(x) G(x) \quad F, G \in R\left(\zeta_{n}\right)[x] \tag{3}
\end{equation*}
$$

Since all the roots of (2) are of the form $n^{1 / k} \zeta_{k h}^{s}$ we have
Received July 11, 1955.

