REMARK ON THE PRECEDING PAPER ALGEBRAIC EQUATIONS SATISFIED BY ROOTS OF NATURAL NUMBERS

E. G. STRAUS AND O. TAUSSKY

In the preceding paper [1] it was shown that the polynomials in question are factors of $\mathcal{P}_h(x^k/n)$ where \mathcal{P}_h is the cyclotomic polynomial of order h and k, n are positive integers. The case k=2 was settled in [1, Lemma 2]. It will now be shown that this is essentially the only nontrivial case. For a different treatment of a somewhat related question see K. T. Vahlen [2].

First let us remark that we can exclude the case $n=m^a$ where d/k, d > 1; since we may then set $y=x^{k/a}/m$ so that $\mathcal{P}_h(y^a)$ is either reducible with cyclotomic factors or equal to $\mathcal{P}_{ha}(y)$. We shall refer to n and $\mathcal{P}_h(x^k/n)$ which satisfy the above exclusion as simplified.

THEOREM. The simplified polynomial $\Phi_h(x^k/n)$ is irreducible for all odd k. For k=2l the polynomial is reducible if and only if $\Phi_h(x^2/n)$ is reducible. In that case we have

(1)
$$\Phi_h(x^k/n) = g(x^l)g(-x^l),$$

where the polynomials on the right are irreducible.

The proof is based on the following lemma.

LEMMA. If k > 2 and $n^{1/k}$ is simplified then $n^{1/k}$ is not contained in a cyclotomic field.

Proof. The Galois group of a cyclotomic field $R(\zeta)$ is Abelian and hence all subfields of $R(\zeta)$ are normal. The field $R(n^{1/k})$ is, however, not a normal field for k > 2.

We can now prove the Theorem. Let ζ_h be a primitive *h*th root of unity. A zero ω of a simplified $\Phi_h(x^k/n)$ is a zero of

$$(2) x^k - n\zeta_h$$

and hence $R(\omega)$ is an algebraic extension of $R(\zeta_h)$. If the degree of $R(\omega)$ over $R(\zeta_h)$ were k then its degree over R would be $k\varphi(h)$. Hence $\varphi_h(x^k/n)$ is reducible if and only if (2) is reducible over $R(\zeta_h)$. Say

(3)
$$x^{k}-n\zeta_{h}=F(x)G(x) \qquad F, G \in R(\zeta_{h})[x].$$

Since all the roots of (2) are of the form $n^{1/k} \zeta_{kh}^s$ we have

Received July 11, 1955.