## AN ANALOG OF THE MINIMAX THEOREM FOR VECTOR PAYOFFS

David Blackwell

1. Introduction. The von Neumann minimax theorem [2] for finite games asserts that for every $r \times s$ matrix $M=\|m(i, j)\|$ with real elements there exist a number $v$ and vectors

$$
p=\left(p_{1}, \cdots, p_{r}\right), \quad q=\left(q_{1}, \cdots, q_{s}\right), \quad p_{i}, q_{j} \geq 0, \quad \sum p_{i}=\sum q_{j}=1
$$

such that

$$
\sum_{i} p_{t} m(i, j) \geqq v \geqq \sum_{j} q_{j} m(i, j)
$$

for all $i, j$. Thus in the (two-person, zero-sum) game with matrix $M$, player I has a strategy insuring an expected gain of at least $v$, and player II has a strategy insuring an expected loss of at most $v$. An alternative statement, which follows from the von Neumann theorem and an appropriate law of large numbers is that, for any $\varepsilon>0$, I can, in a long series of plays of the game with matrix $M$, guarantee, with probability approaching 1 as the number of plays becomes infinite, that his average actual gain per play exceeds $v-\varepsilon$ and that II can similarly restrict his average actual loss to $v+\varepsilon$. These facts are assertions about the extent to which each player can control the center of gravity of the actual payoffs in a long series of plays. In this paper we investigate the extent to which this center of gravity can be controlled by the players for the case of matrices $M$ whose elements $m(i, j)$ are points of $N$-space. Roughly, we seek to answer the following question. Given a matrix $M$ and a set $S$ in $N$-space, can I guarantee that the center of gravity of the payoffs in a long series of plays is in or arbitrarily near $S$, with probability approaching 1 as the number of plays becomes infinite? The question is formulated more precisely below, and a complete solution is given in two cases: the case $N=1$ and the case of convex $S$.

Let

$$
M=\|m(i, j)\|,
$$

$$
1 \leqq i \leqq r, 1 \leqq j \leqq s
$$

be an $r \times s$ matrix, each element of which is a probability distribution over a closed bounded convex set $X$ in Euclidean $N$-space. By a strategy for Player I is meant a sequence $f=\left\{f_{n}\right\}, n=0,1,2, \cdots$ of functions, where $f_{n}$ is defined on the set of $n$-tuples $\left(x_{1}, \cdots, x_{n}\right), x_{i} \in X$

[^0]
[^0]:    Received September 14, 1954. This paper was written under contract Nonr 1197(00) with the Office of Naval Research.

