ON SOME SPECIAL SYSTEMS OF EQUATIONS

H. H. Corson

1. Let F be an arbitrary field. Let S be a system of equations which, when solved for two of its variables, takes the following form:

$$
\begin{align*}
& x_{1}^{k_{1}}=f\left(x_{3}, \cdots, x_{n}\right), \tag{1}\\
& x_{2}^{k_{2}}=g\left(x_{3}, \cdots, x_{n}\right),
\end{align*}
$$

where f and g are arbitrary functions of the indicated variables. Consider also the equation

$$
\begin{equation*}
y^{k_{1} k_{2}}=f^{s k_{2}}\left(y_{3}, \cdots, y_{n}\right) g^{r k_{1}}\left(y_{3}, \cdots, y_{n}\right) \tag{2}
\end{equation*}
$$

Theorem 1. If $\left(k_{1}, k_{2}\right)=1$ and $r k_{1}+s k_{2}=1$, then the distinct solutions of (1) in F with $x_{1} x_{2} \neq 0$ may be put in one-to-one correspondence with the distinct solutions of (2) in F with $y \neq 0$. Moreover, these solutions of (1), $x_{1} x_{2} \neq 0$, may be determined from the solutions of (2), $y \neq 0$, and conversely, by means of transformations (3) and (4) below.

Proof. Assuming for the rest of this section that $x_{1} x_{2} \neq 0, y \neq 0$, we put

$$
\begin{align*}
& x_{1}=y^{k_{2}}\left\{\frac{f\left(y_{3}, \cdots, y_{n}\right)}{g\left(y_{3}, \cdots, y_{n}\right)}\right\}^{r}, \\
& x_{2}=y^{k_{1}}\left\{\frac{g\left(y_{3}, \cdots, y_{n}\right)}{f\left(y_{3}, \cdots, y_{n}\right)}\right\}^{s}, \tag{3}\\
& x_{i}=y_{i}
\end{align*}
$$

and notice that if $\left(y, y_{3}, \cdots, y_{n}\right)$ is a solution of (2) then (3) determines a solution of (1). Now let

$$
\begin{equation*}
y=x_{1}^{s} x_{2}^{r} \tag{4}
\end{equation*}
$$

$$
y_{i}=x_{i}
$$

$$
(i=3, \cdots, n)
$$

It may be verified directly that if $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is a solution of (1) then (4) determines a solution of (2). Further, given a solution (x_{1}, x_{2}, \cdots, x_{n}) of (1) and a solution (y, y_{3}, \cdots, y_{n}) of (2) with $x_{i}=y_{i}(i=3, \cdots$, n), then (3) implies (4) and conversely-which may be verified with the use of the relation $r k_{1}+s k_{2}=1$.

