ON SOME SPECIAL SYSTEMS OF EQUATIONS

H. H. CORSON

1. Let F be an arbitrary field. Let S be a system of equations which, when solved for two of its variables, takes the following form:

(1)
$$x_{1}^{k_{1}} = f(x_{3}, \dots, x_{n}),$$
$$x_{2}^{k_{2}} = g(x_{3}, \dots, x_{n}),$$

where f and g are arbitrary functions of the indicated variables. Consider also the equation

(2)
$$y^{k_1k_2} = f^{s_k}(y_3, \cdots, y_n)g^{r_k}(y_3, \cdots, y_n)$$
.

THEOREM 1. If $(k_1, k_2)=1$ and $rk_1+sk_2=1$, then the distinct solutions of (1) in F with $x_1x_2\neq 0$ may be put in one-to-one correspondence with the distinct solutions of (2) in F with $y\neq 0$. Moreover, these solutions of (1), $x_1x_2\neq 0$, may be determined from the solutions of (2), $y\neq 0$, and conversely, by means of transformations (3) and (4) below.

Proof. Assuming for the rest of this section that $x_1x_2 \neq 0$, $y \neq 0$, we put

(3)

$$x_{1} = y^{k_{2}} \left\{ \frac{f(y_{3}, \dots, y_{n})}{g(y_{3}, \dots, y_{n})} \right\}^{r},$$

$$x_{2} = y^{k_{1}} \left\{ \frac{g(y_{3}, \dots, y_{n})}{f(y_{3}, \dots, y_{n})} \right\}^{s},$$

$$x_{i} = y_{i}$$

$$(i = 3, \dots, n)$$

and notice that if (y, y_3, \dots, y_n) is a solution of (2) then (3) determines a solution of (1). Now let

(4)
$$y = x_1^s x_2^r$$
, $y_i = x_i$ $(i=3, \dots, n)$.

It may be verified directly that if (x_1, x_2, \dots, x_n) is a solution of (1) then (4) determines a solution of (2). Further, given a solution (x_1, x_2, \dots, x_n) of (1) and a solution (y, y_3, \dots, y_n) of (2) with $x_i = y_i$ $(i=3, \dots, n)$, then (3) implies (4) and conversely—which may be verified with the use of the relation $rk_1 + sk_2 = 1$.

Received August 8, 1955.