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Introduction and Summary, Let {XJ i = l , 2, be a sequence of
independent and identically distributed integral valued random variables
such that 1 is the absolute value of the greatest common divisor of all
values of x for which P(Xi=x)^>0. Define

Chung and Fuchs [5] showed that if x is any integer, Sn=x infinitely
often or finitely often with probability 1 according as EXi=0 or φθ ,
provided that E\Xt\<i^ . Let 0<^EXt<^oo , and A denote a set of
integers containing an infinite number of positive integers. It will be
shown that any such set A will be visited infinitely often with proba-
bility 1 by the sequence {Sn} n=l, 2, . Conditions are given so that
similar results hold for the case where Xt has a continuous distribution
and the set A is a Lebesgue measurable set whose intersection with
the positive real numbers has infinite Lebesgue measure.

A Theorem about Markov Chains, Let {Zn}, rc=0,l, ••• denote a
Markov chain with stationary transition probabilities where each Zn takes
on values in an abstract state space X. The distribution of ZQ is given
but arbitrary. Let Ω denote the space of all possible sample sequences
w, P the probability measure over Ω and P ( | •) the conditional proba-
bility. The following theorem appears in [4].

THEOREM 1. Let A be any event in X. A sufficient condition that

(1) P(Zn e A infinitely often) = 1

is

(2) inίP(ZneA for some n\Zo=z)yθ .

Since [4] is not readily accessible, we shall prove the theorem here.

Proof? We have with probability 1 that for j^>N
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2 The proof given here is a modification of one suggested by J. Wolfowitz,
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