CORRECTION TO "SOME ERGODIC THEOREMS INVOLVING TWO OPERATORS"

Paul CIVIN

The argument used to establish Theorem 1 of [1] proves less than asserted. Let the notation be that of [1]. Theorem 3 is then a consequence only if $\mu(S) < \infty$ and therefore Theorems 4 and 5 must be withdrawn. The revised version of Theorem 1 is as follows.

THEOREM 1.1. Let t and u be nonsingular measurable transformations of S onto itself which have no wandering sets of positive measure. If for each f(x), $0 \leq f(x) \leq 1$, $\lim_{n \to \infty} \sum_{k=0}^{n} f(v^{k}x)/n$ exists almost everywhere $[\mu]$, then the conclusion of Theorem 1 holds.

By Theorem 3 of [2] there exists a finite *t*-invariant measure α and a finite *u*-invariant measure β , each equivalent to μ . The argument proceeds as before with these α and β . In Theorem 2, the α and β are also obtained as above.

The author is indebted to Professors Y. N. Dowker and S. Tsurumi for their communications.

References

1. Paul Civin, Some ergodic theorems involving two operators, Pacific J. Math. 5 (1955), 869-876.

2. Yeal Naim Dowker, Finite and σ -finite invariant measures, Ann. Math. **54** (1951), 595–608.