NOTE ON A THEOREM OF HADWIGER

R. Steinberg

Throughout this paper, H denotes a Hilbert space over the real or complex numbers and (x, y) denotes the inner product of the vectors x, y of H. The only projections we consider are orthogonal ones.

Our starting point is the basic fact that, if $\left\{u_{\alpha}\right\}$ is an orthonormal basis of H, then the Parseval relation

$$
\begin{equation*}
(x, y)=\Sigma\left(x, u_{\alpha}\right)\left(u_{\alpha}, y\right) \tag{1}
\end{equation*}
$$

is valid for each pair of vectors x, y of H. It is easy to see that (1) is also valid if $\left\{u_{\alpha}\right\}$ is the projection of an orthonormal basis $\left\{w_{\alpha}\right\}$ and if we restrict x and y to the range of the projection. Indeed, if E is the projection, so that $w_{\alpha} E=u_{\alpha}$ for each α, then

$$
\begin{aligned}
(x, y) & =\Sigma\left(x, w_{\alpha}\right)\left(w_{\alpha}, y\right)=\Sigma\left(x E, w_{\alpha}\right)\left(w_{\alpha}, y E\right)=\Sigma\left(x, w_{\alpha} E\right)\left(w_{\alpha} E, y\right) \\
& =\Sigma\left(x, u_{\alpha}\right)\left(u_{\alpha}, y\right)
\end{aligned}
$$

The theorem referred to in the title deals with this result and also with the converse question:

Theorem 1. If the Parseval relation (1) is valid for each pair of vectors x and y of H, then the set $\left\{u_{\alpha}\right\}$ is the projection of an orthonormal basis of a superspace K of H.

This result was first proved by Hadwiger [1], and, then, by Julia [2]. We first give a simple proof of Theorem 1 that depends on a simple imbedding procedure, and then consider some related questions concerning projections of orthogonal sets of vectors.

Proof of Theorem 1. We choose as K coordinate Hilbert space [4, p. 120] of dimension equal to the cardinality of the set $\left\{u_{\alpha}\right\}$. We see from (1), with $x=u_{\beta}, y=u_{\gamma}$, that the matrix $U=\left(\left(u_{\alpha}, u_{\beta}\right)\right)$ is idempotent. Since U is also Hermitian, it may be interpreted as a projection acting on K. We now imbed H in K by making correspond to x in H the (row) coordinate vector $x^{\prime}=\left\{\left(x, u_{a}\right)\right\}$ in K. In particular, to the vector u_{β} there corresponds the β th row of U which is manifestly the image, under the projection U, of the β th coordinate basis vector. Finally, if $x^{\prime}=\left\{\left(x, u_{\alpha}\right)\right\}$ and $y^{\prime}=\left\{\left(y, u_{\alpha}\right)\right\}$, then $\left(x^{\prime}, y^{\prime}\right)=\Sigma\left(x, u_{x}\right)\left(y, u_{\alpha}\right)=\Sigma\left(x, u_{\alpha}\right)\left(u_{\alpha}, y\right)$ $=(x, y)$; thus the imbedding is isometric and we are done.

We next prove a related result which is due to Julia [2, (c)].

