ON THE TWO-ADIC DENSITY OF REPRESENTATIONS BY QUADRATIC FORMS

Irma Reiner

1. Introduction. The problem of determining $A_{q}(S, T)$, the number of solutions of $X^{\prime} S X \equiv T(\bmod q)$, where $S^{(m)}$ and $T^{(n)}$ are symmetric integral matrices, has been considered by C. L. Siegel [2, pp. 539-547]. He obtained explicit formulas for $A_{q}(S, T)$ when $q=p^{a}$, where p is a prime not dividing $2|S||T|$. We wish to determine both $A_{2}(S, T)$ and $A_{8}(S, T)$ when $|S||T|$ is odd. Siegel has shown that the calculation of $A_{8}(S, T)$, for $|S||T|$ odd, is sufficient to give results when the modulus is replaced by a higher power of 2. Moreover, his work for composite moduli does not exclude a power of 2 as a factor.

We shall follow the pattern of Siegel's work, modifying it by the use of canonical forms established by B. W. Jones [1, pp. 715-727] and Gordon Pall for symmetric matrices in G_{2}, the ring of 2 -adic integers. (Clearly, $A_{q}(S, T)$ depends only on the classes of S and T in G_{q}, the ring of q-adic integers). We shall calculate $A_{2}(S, T)$ combinatorially and $A_{8}(S, T)$ by the use of exponential sums.
2. Recursion formula. For convenience, we state here the following theorem of Jones:

Every quadratic form with matrix in G_{2} and with unit determinant, D, is equivalent to one of the following:
(a)

$$
x_{1}^{2}+x_{2}^{2}+\cdots+a x_{r-2}^{2}+b x_{r-1}^{2}+c x_{r}^{2},
$$

where a, b, c take one of the following sets of values:

$$
\begin{aligned}
& (1,1,1) \text { or }(1,3,3) \text { for } D \equiv 1(\bmod 8), \\
& (1,1,5) \text { or }(1,3,7) \text { for } D \equiv 5(\bmod 8), \\
& (1,1,3) \text { or }(3,3,3) \text { for } D \equiv 3(\bmod 8), \\
& (1,1,7) \text { or }(3,3,7) \text { for } D \equiv 7(\bmod 8),
\end{aligned}
$$

while if $r=2, b$ and c take one of the following sets of values:

$(1,1)$ or $(3,3)$ for $D \equiv 1(\bmod 8)$,	
$(1,5)$ or $(3,7)$	for $D \equiv 5(\bmod 8)$,
$(1,3)$	for $D \equiv 3(\bmod 8)$,
$(1,7)$	for $D \equiv 7(\bmod 8)$.

(b) A sum of binary forms of the two types: $f=2 x_{1}^{2}+2 x_{1} x_{2}+2 x_{2}^{2}$,

[^0]
[^0]: Received October 3, 1955. The author wishes to thank Professor Irving Reiner for helpful suggestions during the preparation of this paper.

